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1. INTRODUCTION

Steady state acoustic scattering is of fundamental importance to SONAR. The ability to predict

acoustic quantities plays an important part in the design and acceptance of underwater systems.

Problems involving large scale structures present difficulties. In principle it is possible to consider

monochromatic scattering using precise techniques such as a coupled finite element and boundary

element approach [1]. However apart from at low frequencies these methods can be expensive

computationally. For certain extended structures such as the sea bed even this is not possible. If

the structure has some exploitable symmetry then the effort can be reduced. Here we consider

stmctures that are many wavelengths in extent which exhibit a high degree of spatial repetition. It

becomes convenient to assume that the object is of effectively infinite extent. Thus the structure

is idealised as an acoustic baffle with well definedtransmission and reflection characteristics.

2. THEORY

A monochromatic plane wave, Pine of form, Poei(“’"l“), in a compressible fluid with no mean

flow is incident on a planar structure composed of a doubly periodic plane (figure 1.). The system

conveniently may be composed of three regions; the fluid above and below the structure and the

structure itself (regions 1,111 and 11 respectively, figure 1.). The pressure distribution in the fluid

regions satisfies the Helmholtz wave equation. The incident wave in the fluid region 1 produces

reflected and, depending on the nature of the structure, transmitted wave components into region

111 beneath. Higher scattering order waves may be excited which either decay with distance from

the plane or propagate to the far field. Associated with each wave is a wavenumber, k", which if

real refers to a propagating wave, and a complex amplitude, which depending on fluid region is

either a transmission, Tm or a reflection coefficient, Rrs.

Owing to the assumed structural periodicity it is natural to invoke Bloch’s theorem. This is the

mathematical embodiment of the spatial periodicity in the problem and results in considering the

two dimensional infinite spatial Fourier expansions of the acoustic and displacement fields. The

former may be written for the two fluid regions as,

P, (x. y, z) = PM + ERnei(a’x+ 51”")
’5

. (1)
( , B; k"PIII(x,y’z) = ETrsel xu +y z )
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Here, or, and [is are spatial wavenumbers of each wave component projected on to the x and y axes.

The direction of propagation of any wave is simply ((1,, [35, t k") depending on fluid region.

Similar relations apply to the normal velocities at each boundary. A fuller exposition of the theory

is available as an addendum to [2].

3. NUMERICAL DISCRETISATION

Bloch’s theorem requires that only a single unit cell need be considered (figure 1). This includes

also small regions of fluid above and below the structure to accurately describe the acoustic near

field. The PAFEC finite element analysis system [2] has been adapted to model both the fluid

regions and the structure. The Helmholtz equation was discretised using a formulation of the finite

element method as described in [3] using quadratic shape functions. The structure was idealised

with a mesh of standard isoparametric three dimensional elastic elements [3].

Assuming harmonic motion of circular frequency, (1), results in a set of linear equations,

{BhwflM} wf Pfl=[wq (a
-2 ’

m- mtmumnm a[F]

to be solved, where, [u], is a vector of displacements on the structural mesh, [p], is a vector of

pressures on the acoustic mesh. [S] and [M] are structural stiffness and mass matrices respectively

while those with a subscript, a, pertain to the acoustic fluid regions. [F] is a vector representing

any external structural forcing and [FL, is an equivalent set of acoustic “forces” acting at the top

and bottom fluid surfaces S+ and S' (figure 1) caused by the imposition of surface vibration due to

the incident pressure field. Coupling matrices [C] are required to provide consistent continuity

relations between the fluid and the structure. Equation (2) is reduced by imposing complex

generalised constraints ensuring that the pressure and displacement fields obey the correct

periodic boundary conditions.

The acoustic “forces” need careful consideration and are determined by the impedances of the

spatial Fourier coefficients for the expansions of the acoustic pressurefields in regions I and III.

The spatial expansions resulting in transforms of the “forces” to the pressure fields are truncated

to 2Nx+1 and 2Ny+1 terms respectively. This yields the system matrices,

{[s] -w2[M]} [C17 [[14]] = [m] (3)

m mflawm,m}m [m ’

where [P], is the equivalent “forces” due solely to the incident wave and [X] is the transform

matrix with of the order of 2Nx+1 by 2Ny+1 rows. The size of [X] is governed by the number of

possible evanescent or propagating acoustic waves present in the problem and the number of

acoustic degrees of freedom retained after reduction. Clearly a sufficient number of waves must

be maintained for a good representation of the acoustic fields. The matrix equation (3) is solved

and the transmission and reflection coefficients derived via an implicit inverse transform.
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4. TEST PROBLEMS

Two problems are addressed. The first tests simple acoustic reflection and refraction with an actual

structure while the second considers higher scattering orders on an idealised corrugated boundary.

The fluid in each case is water with a sound speed of 1500 ms'1 and density of 1000 kgm'l.

An infinite isotropic elastic plate [4] composed of a polyurethane material (Young’s modulus =

4.1x109 Pa, Poisson’s ratio = 0.4 and density = 1.4x103 kgm'3) is isonified by a plane wave

incident at 00 = 10° from the normal coplanar with the xz plane. The structural material may

exhibit intrinsic damping by imposing complex moduli. The material’s bqu wave speed is similar

to that of the surrounding fluid while its specific acoustic impedance is double that of water. The

plate is nearly acoustically transparent. This case was chosen by Hennion et al. [4] as a test of their

finite element method. In contrast to this work, their method was restricted to two dimensional

problems only. This has recently been extended to fully three dimensional problems [5] from

which some of this work is derived.

Transmission coefficients are evaluated over the frequency range 100 - 104 Hz. The infinitesimal

degree of symmetry forbids all but asingle transmitted wave and hence only the minimum number

of Fourier coefficients is required (Nx = 0, Ny = 0). This results in one wave in total. The simple

mesh comprises some 24 elements (16 structural) the mesh density determined by the highest

frequency considered and the sound speed in the material.

Heaps [6] obtained a closed form solution to the problem of two-dimensional plane wave

scattering by a pressure free surface with a sinusoidal spatial profile (of form Acos(21r.x/L)). His

derivations for the various reflection coefficients are given via a recurrence relation. These

expressions are in the form of power series expansion of a small parameter, a = 104, essentially the

ratio of the acoustic wavelength to the amplitude of the profile. Heaps cites explicit formulae

ignoring parameter terms of forth order or higher. Heaps’ work is generalised to consider point

sources in the fluid. This capability is not within the finite element method at present and that part

of [6] is ignored in this paper.

Heaps’ [6] theory requires that the profile amplitude be small compared to the spatial wavelength.

We consider a profile withA = 0.5 m andL = 8.0 m. The mesh is entirely of acoustic elements (70

in all). The somewhat large number is more a matter of attempting to reproduce the correct profile

with piecewise quadratic functions rather than considerations as to frequency. The set of Fourier

components (Nac = 4, Ny = 0) results in a total of 9 waves considered. TWO separate sets of

calculations are presented. The first considers fixed angle of incidence (10° off- normal) and

varying the frequency over the range of 100 - 400 Hz. The second at a fixed frequency of 200 Hz.

has varying angle of incidence, 00, from 0° (normal) to 80°.

5. RESULTS and DISCUSSION

The magnitude of the frequency dependent transmission coefficient for the elastic plate derived

by the finite element scheme (this work) shows excellent accord with an expression derived

exactly (see figure 2.). This is especially so at low frequencies below the first coincidence
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resonance (the position of which is well predicted by this work to be at 4.4 kHz). At higher

frequencies this work slightly over predicts transmission by up to 2%. This may be a consequence

of the coarse mesh which results in a slightly over stiff plate. This is born out by the second

resonance predicted by this work being a little above that of exact theory (8.39 cf. 8.36 kHz.).'I'he

level of accord between this work and the exact solution is similar to the two dimensional finite

element results of [4].

The magnitudes of the reflection coefficients for the sinusoidal pressure release surface predicted

by this work are tabulated (see, tables 1. and 2.) with those of Heaps [6]. The reflected wave

amplitudes follow Heaps’ notation and only propagating amplitudes are shown (a null entry

corresponds to an evanescent component). The non-specular angles in [6] are given by the exact

relation, sine” = sin00+nML (e.g. 0+1 = 40°, at 400 Hz.). Clearly there is good accord as to the

conditions for the on-set of such non-specular propagation. The finite element method predicts the

same number of propagating waves as does Heaps. For the specific case of fixed angle of

incidence (table 1.) the PAFEC amplitudes (marked by *) agree well with Heaps’ values

particularly at the low frequencies where the Heaps’ expansion should be good. Here the

agreement is typically within 2%. At the highest frequency considered, this work differs from the

Heaps’ approximation by less than 15%. Here the convergence of the Heaps series solution is in

doubt with the smallness parameter, :4, being ~ 0.5.

For differing angles of incidence again a similar level of agreement with Heaps [6] and this work

is seen (table 2.). The on-set of excitation of the second order wave (A+2) at just less than 70°

directly back towards the acoustic source of the incident plane wave is well reproduced. However

there is some disparity in the magnitude of the specular amplitude, IAOI, particularly at high angles

of incidence (table 2.). The Heaps’ prediction decreases monotonically between 10° and 50° while

the finite element amplitude rises after 30° to around unity at 50°. This may be due to higher order

terms neglected by Heaps [6] becoming significant at near grazing incidence. Here the surface is

effectively “shiny” and a very large (almost unity) specular component is expected. Given that the

formulae of Heaps [6] are approximate it is remarkable that they produce such good level of

accord with this work. No exact solution to this problem exists but it is gratifying that the finite

element results are consistent with the truncated series solution [6].

6. CONCLUSIONS

The finite element method can be used to predict the reflection and transmission characteristics of

a spatially periodic scatterer of effectively infinite extent. Higher non-specular waves are included

in this treatment which is exact within the limits of the finite element approximation. The

reflection and transmission wave amplitudes are obtained as are their directions. It is important to

remember that the derived beams are plane waves with no “width”; a consequence of considering

an infinitely large structure and Heisenberg’s Uncertainty Principle!

The use of the finite element method allows for great freedom in structural modelling. All kinds

of complicated structures can be considered provided a degree of spatial regularity exists.

Incorporating structural losses is conceptually simple by adopting complex elastic moduli.
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------
wom- ------
zoo ms ---
250 Hz. 0.8407 0.4499

300 Hz. 0.7051 0.5075

350 Hz. 0.5602 0.5400

4001—12 0.5805 0.6310 0.3302 0.2935

Table 1: Reflection coefficients for specular and higher scattering orders for a plane wave

incident on pressure release sinusoidal corrugations for various frequencies andfixed angle of

incidence, B =10° (* this work using the PAFECfinite element code).

   

  

                
     
      
         

IA 0] IA-1I IA—I *| Mel |A2*l

0.9409 0.4032 0.4061

0 9446 0.3946 0.3937

20° 0.9322 0.9417 0.3664 0.3862

30° 0.9256 0.9329 0.3267 0.3541

0 9224 0.9634 0.2782 0.3147

0.9215 1.0135 0.2232 0.2568

0.9219 1.0407 0.1630 0.2020

70° 0.9225 0.9696 0.108 0.1388 0.0300 0.0288

Table 2: Reflection coefficients for specular and higher scattering orders for a plane wave

incident on pressure release sinusoidal corrugations at a fixedfrequency (200 Hz.) and varying

angle of incidence (* this work using the PAFECfinite element code).

IAo"|

0.9389

10° 0.9443

50°
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figure 1.
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Region I: Fluid.
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Plane wave incident on periodic structure illustrating the unit cell.

figure 2.
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Transmission coefi‘icient for a polyurethane plate atfixed angle of incidence (6 = 10°).

65

Free. LO.A. Vol 16 Pan-6 (1994)

 



Proceedings of the Institute of Acoustics

 Proc; |.O.A. Vol 16 Part 6 (1994) 


