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1. INTRODUCTION

underwater acoustic purposes. Much emphasis is being placed on obtaining compact. high power

sources, to operate at low frequencies for a variety of applications. The flextensional design of

projector is a promising choice to meet these requirements. Here a simple shell is excited at
resonance electromechanically, usually by means of a piezoelectric ceramic stack. The surface of
the shell flexes and so produces compression and rarefaction in the surrounding fluid, which in turn

radiates to the far-field. Several different types of flextensional transducer exist [I].

There is great interest in the design and development of flextensional-type transducers for l

  

 

     
   

              

 

    

        
  

The use of a compliant shell has a number of advantages. The shell may be excited at selected

regions to exploit any mechanical advantage provided by its shape. Composite materials may be

readily used. providing greater design flexibility. More importantly, a large volume displacement

in the fluid is possible. provided by the large active surface areaof the shell. This allows high

acoustic power outputs to be achieved.

The relatively large surface area exposed to the surrounding fluid makes flextensional transducer

designs sensitive to large external static pressure. This may adversely affect the operation of the

device to a lesser or greater extent as a function of depth. In extreme cases the outer shell may
buckle catastrophically. More likely, the electromechanical drive may become uncoupled from the
shell or the bias pre-stress of the ceramic stack is reduced below a critical value. These phenomena
result in the projector failing to produce sound of sufficient intensity below a certain depth. A more
subtle effect is the change in the structural stiffness of the transducer due to the hydrostatic load.
This stress-stiffening changes the resonance frequency as the transducer changes depth. This
results in a loss of efficiency as the driving frequency is usually fixed.

  
To counteract the hydrostatic loading requires some mechanism to compensate for the resultant
forces without recourse to elaborate and cumbersome, reinforcing of the shell. An obvious scheme
would provide a corresponding internal shell pressure which would balance the outside hydrostatic
load. This internal pressure must be allowed to vary appropriately as depth.

  
  
  
  
   
   

The Finite Element (F.E.) method is a useful tool in general structural analysis [2]. The method

has been employed with success in transducer design studies [3]. In this paper, we employ the
method to predict the effect of hydrostatic loading on a flextensional transducer. In particular, the
stress-stiffening effect. The F.E. method is also used to assess the effectiveness of a possible depth
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compensation scheme. This amounts to a complicated non—linear problem, in general. Not only
must stress-Stiffening terms be included, but material non-linearites may become significant. Large
structural displacements can occur and surfaces may come into contact providing an abrupt change
in boundary conditions. The ABAQUS structural analysis code [4] is used here.

The effect of dynamic fluid loading must be incorporated into the analyses as this greatly affects
the resonance frequencies and mode shapes of any submerged structure. This is done by
surrounding the structure by a volume of fluid with suitable absorbing boundary conditions. We
ignore the far-field radiation pattern as only near—field effects matter here.

We begin with abrief description of the finite element model of an idealized 350 Hz. flextensional
transducer [5]. A simple discussion of the non-linear structural and dynamic fluid loading within

the context of finite element theory follows.The results from the calculations on specific cases of
interest are given with particular emphasis on illustrating the design of a possible depth
compensation scheme. Some brief conclusions end this paper.

2. THE MODEL

We consider a type IV flextensional transducer as a typical design. Here a cylindrical shell with
elliptical cross section is excited harmonically, at the resonant frequency of the first flexural mode,
by small motion along the major axis (fig. la). This produces large surface motion around the
minor axis during flexure of the shell. A large volume of fluid is excited. The acoustic wavelength
in water is much greater than the typical dimensions of the transducer which radiates
omnidireCtionally.

The transducer is taken to consist of a ceramic stack, an aluminium insert and a GRP shell. All the
cited materials are assumed to be linear and isotropic. Piezoelectric coupling is ignored as we are
interested solely in the frequency response and not in predicting the device’s acoustic power levels.
Since the motions and forces are essentially constant over the axial length of a working device a
two-dimensional finite element mesh was adopted for simplicity. The essential physics remain as
we are not concerned with far-field effects. The surrounding fluid has an absorbing boundary
condition to simulate the out-going radiation condition (fig. lb).

The problems that we consider are:

1. The effect of the external pressure on the transducer natural frequencies in vacuo.

2. The effect of the external pressure on the transducer resonances in water.

3. The efficacy of an internal pressure as a counter to the depth effect (see fig. 2).
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3. THEORY

The primary effect of an external static load on the dynamics of a shell or plate—like structure is to

change its stiffness [2]. This phenomenon is readily observed in the buckling of columns under

axial compression. A dynamic example is the vibration of turbine blades where the centripetal

forces produce a change in natural frequency as a function of rotation speed. The change in

stiffness is brought about by the slight deviation from the initial shape by the load. Even though

the strains may still be small there is no longer linear compatibility relating strain to the spatial

derivatives of displacement. Extra terms may come into play producing membrane forces that

affect the resistance of a plate to bending, say. Inthe case of submerged structures the hydrostatic

loading tends to reduce the overall stiffness.

An elastic structure’s response to a loading is detemtined by its stiffness. Within the approximation

of linear elasticity, the response is proportional to the loading and the stiffness is a constant. To

account for the change in structural stiffness due to the action of applied forces requires an

additional stiffness term, dependent on the response. This extra stiffness is known as a geometric

stiffness or initial-stress stiffness. At lowest order, the geometric stiffness is proportional to the

internal forces opposing the applied load.

 

A key aspect of the EB. method is the approximation to the structural stiffness by an assembly of

small, discrete element stiffnesses forming a matrix. In similar vein, the geometric stiffness,

dynamic mass and damping terms are reduced to matrices [2]. In this way the problem takes

algebraic form, which lends itself to solution by computer algorithms.

  The solution of these matrix equations is straight forward, at least in principle, for linear problems.

Since the F.E. method is essentially a linear approximation, an iterative procedure is required for

the more complicated non-linear case. The non-linear terms are dependent on the response and are

collected together as a forcing term to an essentially linearized problem. Successive

approximations are made to solve the linearized equations by assuming small increments in the

loading and hence changes in response. The principle of equilibrium is ensured throughout the

solution phase. This requires that the residual forces generated by the next iteration of the

approximate solution should be small. Solving these equations, we obtain the difference between

the approximate and the exact discrete equilibrium solution. This procedure is repeated until

convergence is satisfied for a single load increment after which the next small load increment is

added. This process continues until the required loading is reached.

  The convergence criteria are specified by the user or automatically by the solution algorithm.

Obviously the more stringent the convergence. the more expensive the solution. Typically, residual

forces should be at least an order of magnitude less than any applied load. A modern proprietary

F.E. code like ABAQUS has several solution algorithms which are suited to different forms of non-

linear structural behaviour. It requires careful consideration on behalf of the user to ensure that his

problem is well posed.
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The fluid requires the provision of special acoustic finite elements. A single pressure degree of
freedom is assigned to each node. The classical Helmholtz equation is assumed to be valid
throughout the acoustic medium which is characterized by its density and bulk modulus. To
account for the fluid-structure interaction, ABAQUS provides coupling elements. The fluid may
exhibit viscous damping through the introduction of a volumetric drag coefficient.

4. PROCEDURE

Case 1. is simply solved using the combined stiffness matrix, in the matrix eigen-equation for the
natural frequencies and mode shapes. The geometric stiffness matrix, is first constructed from a
non-linear statics solution algorithm, in this case a form of Newton’s method.

The solution of case 2. requires a static derivation of the geometric stiffness matrix. as before. The
acoustic fluid elements having been effectively removed, temporarily. This is followed by a direct
solution of the coupled steady-state time-harmonic equations including the acoustic fluid, over a
selected frequency range. The excitation is provided by a harmonic force of unit magnitude along
the axis of the ceramic stack. The damping is dominated by the acoustic radiation damping
contribution and by the absorption of the outgoing waves at the boundary of the fluid.

The resonances are determined by identifying the maxima of the receptance (defined to be the ratio
of the normal surface velocity to the applied force) of the shell at the minor axis as a function of
frequency. The matrices derived from the coupled acoustic-structural interaction equations are
non-symmetric. This is a consequence of the inclusion of the absorbing boundary condition
imposed by the introduction of a volumetric drag coefficient matrix for the outer layer of acoustic
fluid. .

In the latter case. we investigate the use of a free-flood rubber bladder as a simple means of
providing an internal counter pressure. This in principle requires the solution of a highly non-linear
static problem followed by a no less complicated dynamic one. The rubber material is hyperelasric
giving rise to large elastic strains and its action on the shell is an involved contact problem. To
render the procedure tractable requires some simplification.

Firstly, we calculate the reactive forces on the inside of the shell due to the action of the pressurised
rubber bladder counteracting the external pressure. The hyperelasticity of the rubber requires an
iterative solution scheme based on a modified Riks method [5]. The rubber is assumed to be
incompressible and well described by a Mooney-Rivlin material model. The contact procedure
requires the use of gap-type elements and correct evaluation of the surface normals at each
increment. The pressurized bladder works against the shell. The reactive force on the shell due to
the compensation system is then included in the calculation of the geometric stiffness matrix. This
two-stage process is valid provided the shell does not move significantly compared to the bladder
during the incremental contact phase. Having determined the overall structural stiffness, the
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determination of the resonances follows cases 1 (in vacuo) and 2 (in water).

5. RESULTS AND DISCUSSION

The natural frequency for the operating mode in vacuo is predicted to be 730 Hz. Thiscompares

with measured values of between 660 Hz. and 690Hz [5]. The disparity may be reconciled by the

fact that the RE. method generally is derived via a variational principle and tends to predict upper

bounds to natural frequencies of linear structures [3]. The adoption of a [2D] mesh imposes further

constraints and again we expect a high calculated value. Also in the actual transducer. the ceramic

stack does not entirely extend throughout the axial length of the shell [5]. The stack comprises four

regularly spaced columns of ceramic material.This makes the real transducer less stiff than the FE.

idealization. In addition the measured values are derived from admittance loop measurements

(maximum conductance) and are not strictly natural frequencies. As the real structure has a

relatively small Q factor (Q<15) these experimental values may very slightly underestimate the

true natural frequencies.

 

  The calculated resonance frequencies in water show much better agreement with experiment.

Experimental values of between 330 Hz. and 360 Hz for the operating resonant frequency, straddle

our value of 348 Hz. inferred from the receptance calculations The limitations of our in vacuo

calculations are not as apparent with the inclusion of fluid loading. This is due to the dominant

influence of the surrounding water. In principle fluid of infinite extent is required to ensure correct

hydro-acoustic loading. However, to account for the correct amount of water the mean radius of

the fluid volume was chosen to be large enough so that the receptance curves as functions of

frequency were insensitive to first order changes in the radius. Typically the radius was chosen to

be greater than a quarter of the lowest acoustic wavelength considered. Here the fluid is 20 times

more massive than the structure. This allowed the following calculations to be performed with a

good degree of confidence.

The predicted shift in frequency due to the influence of the external pressure, for the lowest

operating mode in vacuo is seen to be 0.4 Hz./metre of water for pressures equivalent to depths less

than 200 m. of water (1 MPa. 2 100 m. depth). Unfortunately there are no experimental data for

this case to compare with this work.The change in the natural frequencies is proportional to the

applied external pressure indicating that the load produces a small change in stiffness. Beyond 200

m. equivalent depth the change in resonant frequency becomes more severe, indicating that the

structure is becoming rapidly less stiff with increasing hydrostatic pressure (fig. 5). At effective

depths greater than 800 m. convergence problems arise. This is born out by the fact that the linear

buckling depth for the uncompensated structure is predicted to be around 1080 m.

  When account of the dynamic fluid loading is made, the effect of the hydrostatic pressure on the

resonances is less marked than in vacuo. As the shell does not deform appreciably while under the

hydrostatic loading, no re-zoning of the fluid mesh was necessary. Our receptance calculations

    1.]. Proc.l.O.A. Vol 12 Part 4 (1990)
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indicate that the predicted shift in resonance frequency is 0.21 Pia/metre of depth (fig. 3). This is

in excellent agreement with experiment [6]. The observed frequency shift is seen to be between 0.2
and 0.3 szmetre of depth for depths less than160 m (neglecting the point at 60 m. depth). Again

the derived frequency measurements are obtained from admittance loop tests. Below 120 m. depth,

the transducer’s efficiency was impaired by the external pressure tending to reduce the bias pre-
stress inside the stack.

Our receptance calculations exhibit somewhat narrow band peaks (fig. 4). Mechanical losses in the

FE. model are neglected to achieve unrealistically high Q values. This allows easy identification

of the frequency at which occurs the receptance maximum for a given hydrostatic pressure. For
convenience we normalise the receptance with respect to the maximum amplitude (fig. 4).

The effect of applying an internal pressure to counteract the hydrostatic load is seen to be

successful (fig. 5). A simple internal pressure (90% of the external pressure) applied to the inside
of the shell reduces the shift in resonant frequency due to stress-stiffening (in vacuo) by over an

order of magnitude. The inclusion of a rubber bladder as a scheme for providing the internal

counter pressure is shown (fig. 2). The bladder experiences an internal pressure of the same

magnitude as the external hydrostatic pressure. This scheme produced almost indistinguishable
results compared with the simple application of the internal pressure. Only the active partof the

bladder was included in the analysis. At pressures exceeding 5 MPa. the bladder suffers extreme

distortion and convergence was difficult to achieve. Thickening the rubber did little to improve

matters. The depth compensation mechanism is seen to be equally efficacious for the fully fluid

loaded projector (fig. 5)‘

6. CONCLUSION

The effect of the hydrostatic pressure on the operational dynamics of a flextensional transducer is
predicted using the non-linear finite element method. A simple [2D] mesh is employed. Account
of the fluid loading is made and the calculated results show good accord with experiment A

scheme for countering the external pressure effects is investigated and found to be effective for

depths over half the catastrophic buckling depth.

Copyright (0) Controller HMSO, London 1990.
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Figures 4. &5. 3
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