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I. XNTRODUCTION

The interaction of acoustic waves with elastic structures is of importance ina vide variety of practical applications. In situations in which the fluid
loading, the back reaction of the continuum on the structure, is substantial,we must confront the coupled structural—acoustics problem. Finite
nonseparable geometries are particularly troublesome because the fluidloading includes the diffracted field due to the edges. In this paper, wenumerically simulate the scattering of a plane acoustic wave froma thin
elastic plate, an infinite strip of width "a," under conditions of moderatelyheavy fluidloading. We give explicit results for both a baffled and
unbaffled plate clamped at its edges. We examine these results and comparethem to predictions basad on simple modeling techniques. This example
contains the essential character of more general finite nonseparable
geometries, but it is two dimensional and as such easier to solve and
understand.

Even for moderately heavy fluidloading an infinite plate is almost
transparent. In this frequency range, the reflection coefficient R -
(reflected flux/incident flux) is typically of order .01 for a steel plate inwater. Unless one is concerned with small deviations from this value, thefrequency must be near a resonance of the fluid loaded plate to obtain anyinteresting far field results. The existence of such phenomena for heavily
fluid loaded plates was first noticed by AbrahamsIl] who studied a baffledstrip, and examined by Crighten and Inneslzl in the same frequency range.Both works give asymptotic low frequency results.

We seek to further our understanding of this phenomena generally, and in
particular to answer the question, when are these resonances of importanceand how well can we model them using simple techniques? In section II, wegive the empirical parameters describing the behavior of the plate near
several resonances; the frequencies, effective masses, and radiation
efficiencies. We explore how reliably these quantities can be estimated. ofparticular interest are the radiation efficiencies since these quantities
determine the widths of the resonances and thus their relevance in various
phenomena.

1.1 Setting Up the Problem

The fluid parameters are the density p and the sound speed c. The plate is
characterized by the following parameters: mass per unit area n5, bending
stiffness D, thickness h, and width "a." at frequency w, the plate supports
a bending wave with a wavenumber kg - (n5/Dlll‘ml’z in vacuum. For steady
state scattering, there are three relevant length scales; the acoustic
wavelength lo, the structural wavelength 1,, and the width of the plate "a."
tThe structural wavelength 1, is somewhat smaller than the vacuum bending
wavelength because of the added mass of the fluid. Thus. there are two .
dimensionless scales in the problem. We take them to be the phase Mach
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number H - cglc - (Wmc)“3, and fl-(clmcalr-h/a. For aluminum or steel in water,
Bah/a. Here Cg is the speed of the bending waves in vacuum andto: is the
coincidence frequency. Other relevant scales are simply expressed in terms
of Wand B; for example, Risen/fl, koa-Hzlfl. The material properties are
conveniently expressed by the fluid loading parameter l- pclwcmp. Typically, a

is a small quantity; for steel in water 2-.133, for aluminum- in water 2-.387.

We consider only the case of steel plates in water, t-.133.'

There have been several ways of defining precisely what heavy fluid loading
means. We essentially adopt Crighten's canventionle). The fluid loading is
said to be moderately heavy at frequency a) if the added fluid mass per unit
area on a bending wave is of order the mass per unit area of the plate, mp.
The fluid loading is very heavy it we can neglect InP relative to the added
fluid mass, and light if we may neglect the added fluid mass relative to mp.

In terms of the frequency parameter M, and the fluid loading parameter r, we

have moderately heavy fluidloading for H-z, very heavy fluid loading for More,

and light fluid loading for Mnc. As mentioned above, we consider the case of
moderately heavy fluid loading; for steel plates in water this is the regime

r .05 S H S .2.

The basic equations of motion for the scattering problem can be found in many
places”) . We invert the differential equations using appropriate Green's
functions and express them as a boundary integral equation on the plate
surface. In this manner, we include the clamped boundary conditions at the
edge of the plate. The integral equation thus obtained is a singular
Fredholm equation of the second kind. one must treat the singularity with
great care, especially in the unbaffled case, but, other than this technical
difficulty, the solution is straightforward. In the absence of any
particularly convenient set of eigenfunctions, we solved the equations by
diacretization. The long version ct this paperH] contains the details of
these manipulations and the method we used to check the numerical results.

. II. RESULTS AND INTERPRETATION~

11.1 Unbaffled Plate '
We consider only a normally incident plane wave. The reflection coefficient

is shown as a function ofMach number for 13-.01 and fi-.0064 in figure 1.
'H N

    lb)
Fig. l. E vs. M. (a)B-.0I, (b)B=.0064. The squares give R for a pure mass.
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The value 5-.Olcorresponds, for example, to a long plate 1mm thick and 10cm
wide. We define the reflection coefficient R by

R _ reflected ower
‘ power incident on the plate

with the power being defined per unit length along the infinite direction of
the strip. The quantity lOloglnR is shown because the reflection coefficient

varies over such a large range. Also shown for comparison for the case fl

-.0064 is the reflection from a point reacting impedance with the same
mass/area as the plate. The reflection coefficient has huge peaks near the
resonant frequencies followed in each case by a minimum. Nearthe peak, the
plate reflects more energy than is directly incident upon it; the plate sucks
energy from the adjacent incident field and then reradiates this energy.

The reflection from the masslike impedance of the plate is so small at these
low frequencies that the structural vibrations totally dominate the reflected
field near the resonances; the enhancement can be as large as «ads in this
example and for a smaller plate or lower frequency even larger. Note however
that the width of the peaks is very narrow. The peak reflection coefficient
is bounded bythe amount ofenergy that can be absorbed from the acoustic
field. crudely speaking, the plate can grab incident flux which is within a

distance of order 10/2. In the above examples we always have 102a, and thus

the maximum effective cross section of the plate is simply the acoustic
wavelength. This phenomena, the effective size ofthe scatterer being given
by an acoustic wavelength near resonance, is analogous to the scattering from

. a simple harmonic oscillatorlS] and is also familiar from scattering problems
in other fieldsIE].

The qualitative behavior of the motion away from resonance is quite simple.
The velocity field can be understood as a superposition of two components: a
forced component as though theplate were infinite, and an oscillating
standing wave component due to the edges. The forced motion is almost purely
in phase with the incident field because the impedance of the plate is so

small compared to po. The amplitude of the wavy vibration is -p1/pc just as
one would have guessed.

The surface wave onthe plate is the highly subsonic coupled fluid-plate
vibration first mentioned by Junger and Feitl3] and explored in detail in
several contexts by Crighten[7]. The wavenumber is accurately predicted by
the dispersion relation

k_‘ _fl ..
mm" {1 ks‘} kZ-koz 0

Typically, the deviation from the vacuum plate wave number in this frequency

range is 20-40! becoming stronger at lower frequencies. For M e t, the very

strong fluid loading regime, the mass of the plate becomes negligible
relative to the mass loading of the fluid, and the above fifth order equation
can be well approximated analytically.

The structure-fluid vibrations typically give rise to only verysmall effects

in the far field due to the weak radiation efficiency of unbaffled

structures; the velocity sources near the edge on either side of the plate

tend to cancel one another. Just above the surface of the plate, the normal

velocity field in the fluid of course coincides with that of the plate,
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obeying a clamped boundary condition at the edge of the plate. a: we move
off the plate the velocity field peaks sharply, corresponding to nearly
incompressible flow around the edge of the plate. This effect tends to
cancel the net scattering sources of the plate. For light fluid loading, we
crudely expect the suppression of the radiated power due to this "short
circuiting' to be order Hz; for such small values of M a very strong
suppression indeed.

As we approach a resonance, the magnitude of the standing waves becomes large
and begins to significantly increase the scatteringr he we pass through the
resonance, there is an interference effect between the driven and resonant
response accounting for the asymmetric shape of the reflection coefficient.
For frequencies below resonance, the driven response and resonant'response
are in phase and their effects add. As we pass through the resonance

frequency the resonant response undergoes_e phase shift of n radians and now

destructively interferes with the driven response: this accounts for the
minima located just after each resonant peak.

The peak in total reflected power thus does not yield precisely the resonance
frequency although it is quite close to it. The correct indicator is the
magnitude of the mean square velocity field. The curves for <v2> have usual
symmetric resonance shapes and we have determined the resonance frequencies
and widths from these curves.

The resonance frequencies for the heavily fluid loaded clamped plate are
given quite accurately by the formula

k.a - o - nn, *

with k, the fluid loaded uavenumber as given above and ¢=.37n a nearly
constant phase shift. This form was first given by Crighten and Innes[2] and

AbrahamsIl] for M«t. We employ the same form and agree surprisingly well on

the value of 0; they obtain ¢=3nllo in the asymptotic low frequency jimit.‘

The phase shift differs by only a small amount from the vacuum value QVE-fi/Z,

and the associated anomalous frequency shift will usually be very small. The
resonances given are only the symmetric modes.  

_ (n

Fig. 2. Unbaffled Mode Shapes. (a) fl=.0064, n-ll, (b) B=.Ol, n-3

Figure 2 shows some representative plate velocity fields near two of the

resonances. We have scaled the velocities to the characteristic fluid
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velocity py/pc. These curves are reasonably similar to vacuum mode shapes.
Generally, for the lover modes, n-3,5,7, the difference can be interpreted as
a small almost uniform offset: i.e. the vibration looks more like A +
scos(k.x) than a pure cosine. For the higher modes, it becomes clear that
this offsetting is larger near the edges. These changes in the mode shape
are important, because small changes in the mode shape can produce a large
change in the radiation efficiency of the vibration, and thus in the
importance of such phenomena. ‘

11.2 Baffled Plato
For the baffled case it is simpler to consider the transmission coefficient 1
defined in the natural way,

_ transmitted over
power incident on the plate'

The transmission coefficient is shoun.as a function of Mach number for B=.02
and .0064 in figure 3. The peaks are once again due to the symmetric
resonances of the plate-fluid system and are immediately preceded in eachcase by a strong minimum. Near the resonance frequencies the plate absorbs
more energy from the acoustic wave than is geometrically incident upon it,1>l, and reradiates this energy. The peak transmission is bounded as in theunbaffled case by the amount of energy the plate can absorb from the incomingfield.

20

’ g.“ 0.09 0." 0.19
n) "

 

Fig. 3. T va. H. (a)B-.02, (b)3-.oosa_

The qualitative behavior of the surface velocity fields is quite similar to
the behavior in the unbaffled case. The response is composed of short
wavelength oscillations with amplitude 0(p‘lpc) superposed on an almost
uniform driven response. The‘effects of the fluctuations again tend to
cancel in the far field. We expect that the suppression due to this
cancellation is a factor of -(Z./na): this is the typical size of pressure
fluctuations in the far field. Unlike the unbaffled case, the real and
imaginary parts of the velocity field are comparable. This is due to the
large radiation damping in the baffled geometry.

The resonant response never dominates the transmitted field because a
substantial portion of the available energy is always transmitted. In
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addition, the resonances have much lower peaks because of the greater
radiation damping. Interference between the driven response and the resonant
response accounts for the shape of the transmission coefficient just as in
the unbaffled case.

The resonant frequencies for the clamped baffled plate can once again be
predicted from the formula

k.a — ¢ =nn.

Here however, o increases slowly with frequency. .29n < o < .39n and for the

fundamental mode the phase shift is much smaller, ¢-.15n. our results differ

with those given by Crighten and Innesl2], they give ¢--3nn. This may be due
to the asymptotic low frequency range they consider.

11.3 Resonance Behavior
in this subsection we investigate the characteristics of the resonances for
both the baffled and unbaffled configurations. In both cases, near resonance
we may approximate the velocity on the plate as

fn

~1mn¢o<1- tun/w) 2) on“
where ¢“(x) is the mode shape, an is the resonance'frequency, fn is the modal

force, am is the effective modal mass, and uh is the modal damping, the
radiation damping per unit area. One should add to this formula the infinite
driven response if an accurate result is needed.

v(x) ~ vn‘9“(x) with v“ =-

We define the radiation efficiencies of the modes in the standard way,

nna=Rna<V2> =°'1n-' Rue/3
For the unbaffled configuration, there is no confusion in separating forced
from resonant response since the resonances are so dominant: we obtain the
radiation efficiencies in h straightforward manner from our results. For the
baffled case, because of interference effects, one cannot obtain accurate

values for the n" in this manner; typically, the radiation efficiency varies
by as much as a factor of two over the width of the resonance. For this
reason, in the baffled geometry, we computed the response to a line drive at
x-O, and determined the radiation efficiencies from these calculations. We

thus determine the appropriate values of the_l‘|n in the above formula. The

other parameters, fn and am, can be determined IlSily from the widths and
peaks of the resonances. In tables 1 and 2 , we give the defining
characteristics'for each of the resonances; the resonance frequency, the
radiation efficiency, the Q, the effective mass, and the peak value of lvl.
These quantities, together with the above expression, enable one to crudely
estimate the importance of the resonances for the particular narrow bandor
broad«band application of interest. We scale the dimensionful quantities as

follows: fin to pc, uh to up, and Ivl to pllpc.

   

  

    

.078128 191

7 .11470 89

.15123

.18850

193
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Table 2. Resonance characteristics for the baffled plate.

11]. DISCUSSION

' How well can we determine the above parameters describing the resonance
behavior using simple modeling techniques? Suppose, for simplicity, we take
the vibrational shape to bel'a vacuum simply supported mode shape,

w”(x) - 43 cos(nnx/a)L
We already have the resonance frequencies with the knowledge of the single
phase shift 0 from the previous section. He now give simple estimates based
on this mode shape for the other parameters describing the resonances. It is
convenient here to use the actual phase Mach number, M'-c./c-M(kg/k,).

The modal mass is a distributed effect and should be reasonably independent
edge effects and boundary conditions; the intinite plate result is

22
mn- MP 4- 2p/knu mp(1 + Ml“).

We expect that this approximation will only be good for the higher order
modes, but in fact it works reasonably well down to ne3. We can derive
separate tormulae for the added mass on the n-l mode using standard
techniques.

 

The radiation efficiency will be sensitive to the boundary conditions and
edge effects: herein lies the largest and most important difference between
baffled and unbaffled geometries. It is straightforward and familiar to
derive the radiation efficiency of the baffled plate[3,8], we give only the
result‘ For the unbaffled plate, notice the following. From the equation of
motion for the plate, the assumed form of the velocity field, and the
dispersion equation for k., we can determine the surface pressure fieldISL

p. - ipc (kg/k,)cos(k.x) - ipc M' v(x).
From this. we determine the radiation damping per unit area,

“nub-{i - {is M-3(1+2J1(xga)/kaa)n
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nah“ - fc- 2M'(1+Jo(k°a)).
na

The functional forms are characteristic of two line sources spaced a distance

"a‘ apart as we would expect. We should multiply these formulae.by 2 if we
want results for a clamped platellol.

The modal force can be evaluated with
similar ease in the baffled geometry,
but forthe unbaffled case we have
tinally tound trouble with
straightforward methods. It can
however be determined using an elegant
reciprocity argument due to Preston
Smith[ll]. The result is

in =1 ZJDWHhIkoa

where DKO) is the directivity function

of the radiation from the excited

mode, and 0 is the angle of incidence

of the incoming plane wave.
We now make reasonable guesses tor

0(9). For the unbaffled case we take

D(8)-2cos1(9), dipole directlvity, and
for the baffled case D(9)-l, monopole

directivity. We are surely

underestimating D(0) in the baffled

case, the radiation is somewhat directive, and we are making some error in

the unbattled case as well. However, because of the square root, the errors

due to this tend to be relatively small. Using the empirical results to: n“

and {n as a test, we find the above relationship to hold reasonably well.

The error is typically only a few percent and in all cases less than 30‘.

expected, we tend to underestimate because of our crude guess for the

directivity. '

 

Fig. I. Erlective Masses vs. H For

the Resonances

As

 

u) .

Fig. 5. Unbaffled Radiation Efficiencies. (a)B-.ol, (b)fl=.0064
lb)

We thus have only to compare the effective masses and the radiation

-efiiciencies o! the resonances. In figure 4, we show the masses for the

various resonances versus the model prediction. The agreement is fairly
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good: the added mass is indeed only weakly dependent on edge effects. The
radiation efficiencies are shown versus the model predictions in figures 5
and 6. In this quantity there can be substantial, order of magnitude,
deviations between the simple modeling predictions and the simulated results.

 

Pig. 6. Baffled Radiation Efficiencies. (a)B-.02, (b)B-.0064

This is due to the influence of the heavy fluidloading on the vibrational
shapes. The striking result is that for the baffled geometry we tend to

. overestimate the radiation efficiencies, while for the unbaffled geometry we
tend to underestimate the radiation efficiencies.

These results can be explained by the following rule we conjecture: in the
presence of fluid loading, the vibrational shape adjusts itself in order to
reduce the interaction between the structure and the fluid; i.e. to reduce
the power flow between the structure and the fluid. In the baffled case,
because of the high radiation efficiency, the part of this power flow which
gets radiated to the far field is comparable to the reactive part, and tends
to get reduced when we reduce the net interaction between the plate and the
fluid. In the unbaffled geometry, the energy which escapes to the far field
is negligible relative tothe reactive energy. The tendency here is to
reduce the short circuiting flow around the edges of the plate which in turn
increases the radiation efficiency. It valid generally, thisprinciple can
give us more insight into the dynamics of heavily fluid loaded
structuresIlZ].

 
The comparison of the simulated results with the simple modeling predictions
enables us to more fully understand the effects of heavy fluid loading.
There are basically the effects, a substantial mass loading, and a small
change of the vibrational shape in the vicinity of the edges. The mass
loading is straightforward to approximate and can give riseto a sizable
shift of the resonance frequencies. The change of the mode shapes gives rise
to a small frequency shift, but a large, as much as order of magnitude,
change in the radiation efficiencies of the resonances.

I would like to thank the many individuals at DTRC who have discussed this
problem with me and given me great encouragement.
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SPANWISE WALL-CURVATURE EFFECT ON THE LON-NAV'ENUMEER SINGULARITY OF THE

WRBULEN‘I‘ BOUNDARY {AYE}! HALL PRESSURE SPECTRUM

M R Dhanek

Topexpress Limited, Cambridge, England

This paper is concerned with the characteristics of the pressure fluctuations
induced on a rigid cylindrical surface by a statistically stationary turbulent
boundary layer: In particular. the effect of spanwise curvature on the low
wavenumber characteristics of the cross spectral density of surface pressure is
exemed using Lighthill’s acoustic analogy.

. The pressure fluctuations induced by a turbulent boundary layer have frequencies,
14, which typically lie in the range 0(U/A) - 0(U/6), where A is the boundary
layer thickness. 8 is the viscous sublayer thickness and U is the speed with
which the boundary layer eddies convect. The fluctuations induce self noise,
cause structural vibrations and radiate sound.

For flow over a plane surface at low Hach numbers Ii - U/c, where c is the speed
of sound, a typical plot of the cross spectral density of wall pressure against
streamwise wavenum'ber (Figure 1) features a broad peak at the convective
streamwise wavenumber (Kw/U) together with a relatively narrower peak at the
acoustic (lower) wavenumber [c| - w/c, where s is the total surface wavenumber.
The breadth of the convective peak is- associated with the range of eddy sizes
in the turbulent boundary layer which contribute to the hydrodynamic pressure
fluctuations. The acoustic peak is narrower since the wavelength associated

with the radiated noise from an isolated eddy is expected to be 0(H-l) times
longer than the typical eddy size. The two peaks are fairly well apart and it
makes sense to consider the characteristics of the spectral density in 'the
vicinity of each separately. The characteristics of the pressure spectrum in
the vicinity of the convective peak are principally governed by incompressible
mechanics. while the low-wavenumber characteristics for |n| < w/c, are governed
by the effects of compressibility. Here. we shall mainly be concerned with the
latter. For a fixed frequency. the length scales associated with low wavenumber
considerations are large compared with those associated with viscous diffusion ‘
so that the fluid may be regarded as inviscid.

 
The surface pressure spectrum is determined using the Lighthill formulation
(1952). According to this. if the surface is plane and of infinite extent. the
spectral density of surface pressure has a non-integrable singularity at the
acoustic wavenulnber, the spectral density being proportional to the response

.1
function oi/cillc2 - u7/c7l . Thus for a given non-zero frequency, the
contribution to the correlation area from the low wavenumber domain of the
wavenumber plane is infinite! This paradoxical result arises because no
allowance is made in the formulation for the weak interaction of the sound
field of a turbulent source element with the turbulence through which it
propagates so that it does not decay fast enough with distance for the
integrated contribution from distant acoustic sources in the infinite plane to
be finite. Although damping of the sound field due to turbulence is a slow

.2
process, over a distance 0(H A) where A is the wavelength of sound. it is

PmlO.A. Vol 10 Putz (19m 31 1-
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significant enough to make the integrated contribution bounded (Crow (1967)):
the effect of viscous surface shear also acts over a comparable distance (Howe
(1979)). At low Hach numbers. the distances involved are rather large and if
the turbulent boundary layer extends over a region with typical dimension.2
1. << )1 A, the damping can be ignored and the neglect of interaction of sound
with turbulence in Lighthill’s formulation is justified. For a finite value of
L (Ffowcs Uilliams 1965, 1982: Bergeron 1973; Howe 1987). the singularity at
the acoustic wavenumber is integrable. Away from the acoustic wavenumber,
|nti - 97/c3| >> u/cL, the spectrum coincides with that.for the infinite plane.
The coefficient of the point pressure spectrum is proportional to log(uL/c).

Here we consider a turbulent boundary layer flow over a smooth infinitely long
rigid cylinder of radius a and determine the associated cross-spectral density
of surface pressure using the Lighthill formulation (c.f. Dhanak (1988)). Our
principal aim is to investigate how the cylindrical geometry may modify the
nature of the power spectrum in the vicinity of the acoustic wavenumber from
the known form for a plane rigid surface in the absence of any acoustic damping
by turbulence or viscosity. The turbulent boundary layer is assumed to be
statistically stationary, transient motions based on initial conditions having
decayed away. An expression for the cross power spectral density of surface
pressure is obtained in terms of a product of a response function associated
with the cylindrical geometry and a term essentially involving the source
functions; viz.,

s- : s s Knha)
P (k,n,u) - poUcA |,—| R(k.n,m)

1Kn(1a) -

where polis the fluid density, Kn are modified Bessel functions. ‘1’ - kz - 13/1:1

and R contains the source terms. In the appropriate limit of letting the radius
of the cylinder become infinite, this expression reduces to the corresponding
expression for an infinite plane surface._

For n cylinder. the radiative domain corresponds to the strip |k| s w/c, where
k is the streamwise wavenumber (see Figure i). For low w-avenumber
considerations. the term involving the source functions is expected to be
well-behaved (see Bergeron. 1973) and the nature of the spectrum is principally
governed by the response function. If n/o denotes the azimuthal wavenumber.
then for n/a - 0. the response function has a logarithmic. integrable.
singularity at the acoustic wavenumber. For n/a :1 0, the response function has

a
finite peaks at s - ten where iifl/ca - na/a' > on > uni/ca; the peaks become

broader and lower with increasing value of n/a. Away from the peaks. the
response function is wall-behaved and decays to zero as |n| - -. Thus. again
in contrast to the case of the infinite plane surface, the low wavenumbor
contribution to the point spectrum is finite.

It is shown that for a cylinder of large radius (a >> c/u). the coafficii/II‘IC of
.l

the peak value of the pressure spectrum is proportional to H'(ua/U)’n and

the width of the peak is 0(n2/'/a). Further. away from the peak. the spectrum
coincides with that for an infinite plane surface., This suggests that for an
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almost plane cylinder, the effect of finite curvature may be allowed for by

the response function by u7/c3(|1¢3(l - 3") - ui/c7| +5'37)”
.1 l

where p is 0((wa/c) /) and varies with the wave-vector angle. Then. for

approximating

non-zero values of n/a, the response function has a peak value fl" and peak
width 0(a). For n/a - 0. the approximate response function is singular at the
acoustic streamwise wavenumber. However, the low-Havenumber contribution to

2 s c 2 a
the point spectrum is finite. being 0(pnucca log((ua/c) / )). This contribution

corresponds to that from equivalent turbulent sources distributed over a finite

plane disc of radius L- 0(a2/a(u/C)-‘/:). For this value of L. L" is the
exponential decay rate of creeping rays on a cylinder (Jones (1979)). 1hus the
point pressure spectrum is finite. the dominant low wavenumber contribution to
the point spectrum being due to creeping rays emanating from turbulent sources
within a distance I. (measured along the surface of the cylinder) of the point.
It may be noted that the contribution implied by ray theory from sources in
line of sight of the point corresponds to that from equivalent sources
distributed over a plane disc of smaller radius L - 0(JaA). sud/c being very
small for low Mach number flows. Hence. in approximating the low wavenumber
contribution to the point spectrum or sound intensity it is insufficient to
consider individual contributions merely from turbulent sources directly in
line of sight of the point: the creeping ray contribution from sources out of
the line of sight also needs to be considered. it being the dominant
contribution.

The results are consistent with that obtained, independently. by Howe (1987)
who considered the effect of general surface curvature (in both streamwise and
transverse directions). on the singularity at the acoustic wavenumber. Having
identified the dominance of the creeping ray contribution to the spectral peak
at the acoustic wave number, he evaluates the leading order effect of general
wall curvature. One consequence of having a general curvature is that the
logarithmic singularity corresponding to antisymmetric spectral elements in the
case of a cylinder. referred to above. is removed and the spectrum is finite
everywhere.

It is shown that the intensity of radiated sound for turbulent flow past a
cylinder of large radius can be estimated as

I

x - obi—'5- log(Ha/A)].

This work use carried out with the support of the Procurement Executive.
Ministry of Defence.
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