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I. INTRODUCTION

The interaction of acoustic waves with elastic structures is of importance in
a wide variety of practical applications, In situations in which the fluid
loading, the back reaction of the continuum on the structure, is substantial,
we must confront the coupled structural-acoustics problem. Finite
nonseparable geometTies are particularly troublesome because the fluid
loading includes the diffracted field due to the edges. In this paper, we
numerically simulate the scattering of a plane acoustic wave from a thin
elastic plate, an infinite strip of width "a," under conditions of moderately
heavy fluid loading. We give explicit results for both a baffled and
unbaffled plate clamped at its edges. WHe examine these results and compare
them to predictions based on simple modeling techniques. This example
contains the essential character of more general finite nenseparable
geometries, but it is two dimensional and ma such easier to solve and

~ understand. : ‘

Even for moderately heavy fluid loading an infinite plate is almost
transparent. In this frequency range, the reflection coafficient R =
(reflected flux/incldent flux) is typically of order .0l for a steel plate in
water. Unless one i3 concerned with small deviations from this value, the
frequency must be near a resonance of the fluid loaded plate to obtain any
Ainteresting far field results. The existence of auch phenomena for heavily
fluid loaded plates was first noticed by Abrahams[l} whe studied a baffled
strip, and examined by Crighten and Innes(2] in the same frequency range.
Both works give asymptotic low frequency results.

We geek to furthe; our understanding of thias phencmena generally, and in
particular to angher the question, when are these resonances of importance
and how well can wa model them using simple techniques? In section II, we
glve the empirical parametars describing the behavior of the plate near
several rescnances; the fraquencies, effective masses, and radiation
efficlencies. We explore how reliably these quantities can be estimated. of
particular interest are the radistion efficlencies since these quantities
determine the widtha of the resonances and thus their relevance in varicus
phenomena.

1.1 Setting Up the Problem

The fluid parameters are the density p and the sound speed ¢. The plate is
characterized by the following parameters: mass per unit araa m,, bending
stiffness D, thickness h, and width "a."” At frequency @, the plate supports
a bending wave with a wavenumber k¢ = (my/D)}40!2 in vacuum. For steady
gtate scattering, there are three relevant length scales; the acoustic
wavelength 1y, the structural wavelength A,, and the width of the plate “a."
“The structural wavelength A, is somewhat smaller than the vacuum bending

wavelength because of the added mass of the fluid. Thus, there are two :
dimensicnless scales in the problem. We take them to be the phase Mach
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number M = cgfc = (Ww.}1/2, and f=(c/w.aieh/a. For aluminum or steel in water,
P=h/a. Here cs is the speed of the bending waves in vacuum and e 15 the
colncidence fregquency. Other relevant scales are simply expressed in terms
of M-and P; for example, ksasM/P, kga=MZ/B. The material properties are
conveniently expresséd by the fluid loading parameter €= pc/@cm;. Typically, &
1s a small quantity; for steel in water ¢=.133, for aluminum-'in wster e=.387.
We conslder only the case of steel plates in water, e=.133.'

There have been several ways of defining precisely what heavy fluid loading
means., We essentlally adopt Crighten's conventions[2). The fluid loading is
said to be moderately heavy at frequency @ if the added fluld mass per unit
arsa on a bending wave 1s of oxder the mass per unit area of the plate, Mg -
The fluid loading is very heavy if we can neglect m; relative to the added
fluid masa, and light if we may neglect the added fluid mass relative to Mp.
In terms of the fregquency parameter M, and the fluid loading parameter £, wa
have moderately heavy fluid loading for M=e, very heavy fluid loading for M«e,
and light fluid loading for Mseé. As menticned above, we consider the case of
moderately heavy fluid loading; for steel plates in water this is the regime
.05 SME .2,

The basic equations of motion for the scattering problem can be found in many
places[3). We invert the differential equaticns using appropriate Green's
functions and express them as a boundary integral equation on the plate
surface. In this manner, we include the clamped boundary conditions at the
adge of the plate. The integral equation thus cbtained 1s a szingular
Fredholm equatien of the second kind. One must treat the singularity with
great care, especially in the unbaffled case, but, other than this technical
difficulty, the solution i1a straightforward. In the absence of any
particularly convenient set of eigenfunctions, wa solved the equations by
discretization. The long version of this paper(4) contains the detalls of
these manipulations and the method we used to chack the numerical results.

. ' II. RESULTS AND INTERPRETATION

- 11.1 Unbaffled Plate )

We consider only a normally incident plane wave. The reflection coefflcient
is shown as a function of Mach numbar for f=.01 and B=.0064 in figure 1.
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Fig. 1. R vs. M. (a}P=.01, (b)P=.0064. The squares give R for a pure mass.
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The valua Pp=.0lcorresponds, for example, to a long plate lmm thick and 1l0cm
wide. We dafine the reflection coefficient R by

) R - reflected power
. powar incident on the plate

with the power being defined per unit length along the infinite direction of
the strip. The quantity 10logoR i3 shown because the reflection coefficient
varies over such a large range. Also shown for comparison for the case B

=, 0064 is the reflection from a point reacting impedance with the same
masa/area as the plate. The reflection coefficient has huge peaks near the
resonant fraquencies followed in each case by a minimum. Near the peak, tha
plate reflects meore energy than is directly incident upon it; the plate sucks
energy from the adjlacent incident field and then reradiates this energy.

The reflaction from the masslike impedance of the plate 1s so small at these
low frecquencies that the structural vibrations totally dominate the reflected
fleld near the rescnances; the enhancement can be as large as 40dB in thias
example and for a smaller plate or lower frequency even larger. Note however
that the width of the peaks is very narrow. The peak reflection coefficient
is bounded by the amount of energy that can be absorbed from the accustic
field. Crudely speaking, the plate can grab incident flux which is within a
distance of order Ag/2. 1In the above examples we always have Ag2a, and thus
the maximum effectlive cross section of the plate is simply the acoustic
wavelength. This phenomena, the effective size of the scatterer being given
by an acoustic wavelength near resonance, is analogous to the scattering from

. a simple harmonic cscillator(5] and is alse familier from scattering problems
in other fields[6].

The qualitative behavicor of the motion away from resonance is quite simple.
The velocity field can be understood as a superposition of two compenents; a
forced component as though the plate were infinite, and an oscillating
standing wave component due to the edges. The forced motion is almost purely
in phase with the incident field becauvse the impedance of the plate is sc
small compared to pe. The amplitude of the wavy vibration is =pi/ps just as
one would have guessed.

The surface wave on the plate 1s the highly subsonic coupled fluid-plate
vibration first mentioned by Junger and Feit[3] and explored in detail in
several contexts by Crighten([7]. The wavenumber is accurately predicted by
the disparsion relation
x4 2ipw

- - = - = 0.

domp {1 kf"} ki-kg2
Typically, the deviation from the vacuum plate wave number in this frequency
range i3 20-40% becoming stronger at lower frequencies. For M « &, the very
strong, fluld loading regime, the mass of the plate becomes negligible
relative to the mass loading of the fluid, and the above f£ifth order equation
can be well approximated analytically.

The structure-fluid wvibrations typically give rise to only very small effects
in the far fleld dua to the weak radilation efficiency of unbaffled
structures; the veloclty sources near the edge on either side of the plate
tend to cancel one another. Just above the surface of the plate, the normal
velocity field in the fluid of course coincldes with that of the plate,
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cbeying a clamped boundary condition at the edge of the plate. As we move
off the plate the velocity field peaka sharply, corresponding to nearly
incompressible flow around the edge of the plate., This effect tends to
cancel the net scattering sources of the plate. For light fluid loading, we
crudely expect the suppression of the radiated power due to this "short
circuiting™ to be order MZ; for such small values of M a very strong
suppression indeed.

As we approach a resconance, the magnitude of the standing waves becomes large
and begins to significantly incremse the scattering. BAs we pass through the
resonance, there is an interference effect between the driven and resonant
response accounting for the asymmetric shape of the reflection coefficient.
Fpr frequencles below resonance, the driven response and rescnant response
are in phase and thelr effects add. As we pass through the rescnance
frequency the resonant response undergoes a phase dhift of f radians and now
destructively interferes with the driven response; this accounts for the
minima located just after each resonant peak.

The peak in total reflected power thus does not yield precisely the rescnance
frequency although it is quite clese to it. The correct indicator is the
magnitude of the mean agquare velocity fleld. The curves for <vi> have usual
symmetric resonance shapes and we have determined the rescnance frequencies
and widths from these curves.

The resonance frequencies for the heavily fluid loaded clamped plate are
given quite accurately by the formula

ksa = ¢ = nn, : .
with k, the fluid loaded wavenumber as given abeve and $=.37Tt a nearly
constant phase shift. This form was first given by Crighten and Innes[2] and
Abrahams [1] for M«g. We empley the same form and agree surprisingly well on
the value of ¢; they obtain ¢=3n/1¢ in the asymptotic low frequency limit.
The phase shift differs by only a small amount from the vacuum value ¢y,o~n/2,

and the associated anomolous frequency shift will usually be very small. The
rescnances given are only the symmetric modes.
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Fig. 2. Unbaffled Mode Shapes. (a} B=.0064, n=11, (b} P=.01, n=3

figure 2 shows some representative plate velocity fields near two of the
resonances. We have scaled the velocities to the characteristic fluid
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velocity pi/pc. These curves are reasonably similar to vacuum mode shapes.
Generally, for the lower modes, n=3,5,7, the difference can be interpreted as
a small almost uniform offset; l.e. the vibration looks more like A +
Beos(kyx) than a pure cosine. For the higher modes, it becomes clear that
this offsetting is larger near the edges. These changes in tha mode shape
are important, because small changes in tha mode shape can produce a large
change in the radiation efficiency of the vibration, and thus in the
importanca of such phenomena, -

11.2 Bafflad Plate
For the baffled case it is simpler to consider the transmissien coefficient T
defined in the natural way,

- transmitted power
power incident on the plate”

The transmission coefficient is shown.as a function of Mach number for p=.02
and .9064 in figure 3. The peaks are once again due to the symmetric
resonances of the plate-fluld system and are immediately preceded in each
case by a strong minimum. Near the resonance frequencies the plate sbsorbs
mora energy from the acoustic wave than is geometrically incident upon it,
T>1, and reradiates this energy. The peak transmission is bounded as in the
unbaffled case by the amount of energy the plate can absorb from the incoming
field. -
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Fig. 3. T va. M. (a}B=.02, (b)P~.0064.

The qualitative behavior of the surface velocity filelds is quite similar to
the behavior in the unbaffled case. The responsa is composed of short
wavelength oscillationa with amplitude O{pi/pec) superposed on an almost
uniform driven response. The effects of the fluctuvations again tend to
cancel in the far field. We expect that the suppression due to this
cancellation is a factor of =(A,/ma); this is the typical size of pressure
fluctuations in the far field., Unlike the unbaffled case, the real and
imaginary parts of the velocity field are comparable. This is due to the
large radiation damping in the baffled geometry.

The resonant response never dominates the tranamitted field because a
substantial portion of the available energy is always transmitted. In
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addition, the rescnances have much lower peaks because of the greater
radlation damping. Interference between tha driven response and the resonant

response accounts for the shape of the transmission coefficient just as in
the unbaffled case.

Tha resonant frequencies for the clamped baffled plate can once again be
predicted from the formula

ksa - ¢ = nm,
Here howaver, ¢ increases slowly with frequency, .29m < ¢ < .39r and for the
fundamental moda the phase shift is much smaller, ¢=.151. OCur results differ

with those given by Crighten and Innes|2], they give ¢=-3w2. This may be due
to the asymptotic low frequency range they consider.

II.3 Resonance Behavior
In this subsection we investigate the characteristics of the resonances for
both the baffled and unbaffled configurations. In both cases, near rescnance
we may approximate the velocity on the plate as

fa
~imn@ {1~ (/1) 2) 41,
where 97(x} is the moede shape, m, i3 the resonance frequency, f, is the modal
force, my is the effective modal mass, and M, is the modal damping, tha

radiation damping per unit area. One should add to this formula the infinite
driven responsa if an accurate result is needed.

vix) ~ v, ¢°(x) with v, =

We define the radiatlon efficiencies of the modes in the standard way,
H“dﬂknd<v2> =M = Rrag/a
For the unbaffled comfiguration, there is no confusion in separating forced
from resonant response since the resonances are so dominant; we obtain the
radiation efficiencies dn m straightforward manner from our results. For the
baffled case, becanse of interference effects, one cannot obtain accurate
" values for the 7, in this manner; typically, the radiatlen efficiency varies
by as much as a factor of two over the width of the resonance. For this
reagon, in the baffled geometry, we computed the response to a line drive at
x=0, and determined the radiation efficlencies from these calculations. We
thus detemmine the sppropriate valuves of the N, In tha above formula. The
other parameters, £, dnd m,, can be determined e=8ily from the widths and
peaks of the rescnances. In tables 1 and 2 , we give the defining
characteristics 'for each of the resonances:; the rescnance frequency, the
radiation efficiency, the @, th& effective mass, and the peak value of |v].
These quantlities, together with the above expression, enable one to crudely
estimate the importance of the resonances for the particular narrow band or
broad. band application of interest. We scala the dimensionful gquantitles as
follows: M, to pc, mg to mp, &nrd [v] to pi/pc.

n My My Qp LI lvlpmax
p=. 0064 .

5 . 0749128 2.2a-9 82s .85 193

7 11470 5.%~-4 , 546 3.15 89

9 .15128 9.0e-4 315 2.69 65

11 .18880 1l,25a-3 483 2.26 S0

s P=.01 .
3 07708 3.42e-4 532 4,075 1%8
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5 -13312 l.46-3 263 2.75 50

7 .19118 2, 6e-1 242 2.28 37
P=.02

1 .050845 4.35a-4 390 6.67 328

3 17248 &.2a-3 - 88 2.433 25
Table 1. Resonance characteristics for the unbaffled plate.

n Mp Tp Qn My ) Iv ) RAX
B=. 0064

5 L0786 4.le-3 a2 3,69 33

7 L1148 5.60-3 50 z.02 23

9 1522 T.4e-1 56 2.40 18

11 .1902 1,05e-2 [T 1.83 11.5
B=.01

3 L0750 B.6a=3 21 4.23 28

5 .1320 1.20-2 28 2.54 15

7 .1810 1.7a=2 . 35 2.15 11
P=.02 -

1 0490 fe-2 2.8 12.2 168.8

3 1710 4.de-2 12 2.43 8.4

Table 2. Resonance characteristics for the baffled plate.
IT1. DISCUSSION

" Hoew well can we determine the above parameters describing the rescnance
behavior using simple modeling techniques? Suppose, for simplicity, we take
the vibrational shape te¢ ba ‘a vacuum simply supperted mode shape,

Prix) = JE cos(nnx/a) .
We already have the rescnance frequencles with the knowledge of the single
phase shift ¢ from the previous section. We now give aimple estimates based

on this mode shape for the other parameters describing the resonances. Tt is
convenlent here to use the actual phase Mach number, M'mcy/e=Mike/X,) .

The modal mass is a distributed effect and should be reascnably independent
edge effects and boundary conditions; the infinite plate Fasult is

2e
mn—mp+2pfkn=mp(1 +T:).

We expect that this approximation will only be good for the higher order
modes, but in fact it works reasonably well down to n=3. We can derive
separate formulae for the added mass on the n=1 mode using standard
techniques. . ’ _

The radiation efficiency will be sensitive to the bhoundary conditions and
edge effects; herein lies the largest and most important difference between
baffled and unbaffled geometries. It is straightforward and familiar to
derive the radiation efficlency of the baffled plate[3,8}, we give only the
result. Fer the unbaffled plate, notice the following. From the equation of
metion for the plate, the assumed form of the velocity field, and tha
dispersion equation for k,, we can determine the surface pressure field[9],

Ps = ipc (kp/kydcos(kx) = ipe M' vix).
From this, we determine the radiation damping per unit area,

ReOPSEE = -ﬁ M'2 (14277 (koa) /kon)
n
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e = £ 2n0 (140 tkoa))
nd

The functional forms are characteristic of two line sources spaced a distance
"a®" apart as we would expect. We should multiply these formulae by 2 if we
want results for a clamped plate[l0].

The modal force can be evaluated with
aimilar ease in the baffled geometry,
— but for the unbaffled case we have
. _‘"“”:!’d finally found trouble with
4 \ - . £#10d straightforward methods. It can

N howaver be determined using an elegant
reciprocity argument due to Preston

3 d " smith[11]. The result is

e o £ = 2D OI M /kon

: a whexe D(0) is the directivity function
2 of the radiation from tha axcited
moda, and 0 is the angle of incidence
of the incoming planae wave.
o =~ 3 = We now make reasonable guesses for
' ! " ' ' D(B). For the uwnbaffled case wa take
D(0)=2c0s2(0), dipole directivity, and
Fig. 4. Effective Masses vs. M For for the baffled case D(8)=1, monopole
the Resonances o directivity. We are surely
underestimating D(}) in the baffled
case, the radiation 15 scmewhat directive, and we are making some error in
the unbaffled case as well. However, because of the square rooct, the errors
due to this tend to be relatively small. Using the empirlcal results for 7,
and f, as a test, we find the above ralationship to hold reasonably well.
The error i1s typically only a few percent and in all cases less than 30%. RAs
axpected, we tend to underestimate because of ocur crude guess for the

directivity. ) ) o
0.00) ; ¢.0015
L ]
=1 n=l1
0.002 - 0.0010
N »
n=5
n=3
L] . n n=7
.
0.001 0.0008 *
n=3 =5
J - 1] : | — sl
e
0.00! 0.00
s.ns 0.10 0.15 0.2 1{05 - 0.10 0.15 0.2

= M : o M
Fig. 5. Unbaffled Radiation Efficiencies. (a)fi=.01, (b)p=.0064

We thus have only to compare the effective masses and the radiation

. efficiencies of the rescnances. In figure 4, we show the masses for the
various resonances versus the model prediction. The agreement is fairly
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good; the added mass is indeed only weakly dependent on edge effects. The
radiation efficiencies are shown versus the model predictions in figures §
and €. In this quantity there can ba substantial, order of magnitude,
deviations between the simple modeling predictions and the simulated results.
0.12 0.04

0.10 -—/ - - \\ 0.03 ﬁ‘\ .
‘ AN N |
0.08 = \50 b2 /

L /

1 . Eq ~__
0.06 [0.01 hus n=7 -
el . B n=11
- n=3
. - |
. 0.0 -
0-% oq 0.08 y 014 0.1¢ 3.95_ 0.10 0.15 0.2
() )

Fig. 6. Baffled Radiaticn Efficlencies. ({a)}P=.02, (b)P=.0064

This is due to the influence of the heavy fluid loading on the vibrational
shapes. The striking result is that for the baffled geometry wa tend to

. overestimate the radiation efficiencies, while for the unbaffled geometry we
tend to underestimate the radiation efficiencies.

These results can be explained by the following rule we conjecture: in the
presence of fluld loading, the vibrational shape adjusts itself in order te
reduca the lnteraction between the structure and thas fluid; i.e. te reduce
the power flow between the structure and the fluid, In the baffled case,
bacause of the high radiatilon efficiency, the part of this power flow which
gets radiated to the far field is comparable to the reactive part, and tends
to get reduced when we reduce the net interaction between the plate and the
fluid. 1In the unbaffled geometry, the energy which escapes to the far field
is negligible relative to the reactive energy. The tendency here is to
reduce the short circuiting flow around the edges of the plate which in turn
increases the radiation efficiency. If valid generally, this principle can
give us more insight into the dynamics of heavily fluid loaded
atructures[l2].

The comparison of the simulated results with the simple modeling predictions
enables us to more fully understand the effects of heavy fluid loading.

Thare are basically two effects, a substantial mass loading, and a small
change of the vibrational shape in the vicinity of the edges. The mass
loading 1a straightforward to approximate and can give rise to a sizable
shift of the resonance frequencies. The change of the mode shapes gives rise
to a small frequency shift, but a large, as much as order of magnitude,
change in the radiation efficiencies of the resconances.

I would like to thank the many individuals at DTRC who have discussed this
problem with me and given me great encouragement.
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SPANWISE WALL-CURVATURE EFFECT ON THE LOW-WAVENUMBER SINGULARITY OF THE
TURBULENT BOUNDARY LAYER WALL PRESSURE SPECTRUM

M R Dhanak

Topexpress Limited, Cambridge, England

This paper is concerned with the characteristics of the pressure fluctuations
induced on a rigid cylindrical surface by a statistically statiopary turbulent
boundary layer: In particular, the effect of spanwise curvature on the low
wavenumber characteristics of the cross spectral density of surface pressure is
examed using Lighthill's acoustic analogy.

- The pressure fluctuations induced by a turbulent boundary layer have frequencies,
w, which typically lie in the range 0(U/A) - 0(U/§), where A is the boundary
layer thickness, § is the viscous sublayer thickness and U is the speed with
which the boundary layer eddies convect. The fluctuations induce zelf noise,
cause structural vibrations and radiate sound.

For flow over a plane surface at low Mach numbers M = U/c, where ¢ 1s the speed
of sound, a typical plot of the cross spectral density of wall pressure against
streamwisa wavenumber (Figure 1) features a broad peak at the convective
streamwise wavenumber O{w/U) together with a relatively narrower peak at the
acoustic (lower) wavenumber |[x| = w/c, where x is tha total surface wavenumber.
The breadth of the convective peak is- associated with the range of eddy sizes
in the turbulent boundary layer which contribute to the hydrodynamic pressure
fluctuations. The acoustic peak 18 narrower since the wavelength associated

with the radiated noise from an isolated eddy 1s expected to be O(H'l) times
longer than the typical eddy size. The two peaks are fairly well apart and it
makes sense to consider the characteristics of the spectral density in ‘the
vicinity of each separately. The characteristics of the pressure spectrum in
the vicinity of the convective peak are principally governed by incompressible
mechanics, while the low-wavenumber characteristics for |x| < w/c, are governed
by the effects of compressibility. Hexre, we shall mainly be concerned with the
latter. For a fixed frequency, the length scales associated with low wavenumber .
considerations are large compared with those associated with viscous diffusion
so that the fluid may be regsrded as inviscid.

The surface pressure spectrum is determined using the Lighthill formulation
(1952). According to this, if the surface is plane and of infinite extent, the
spectral density of surface pressure has a non-integrable singularity at tha
acoustle wavenumber, the spectral density being proportional to the response

function w?/c?|x? - u’/c’[‘l. Thus for a glven non-zero frequency, the
contribution to the correlation arez from the low wavenumber domain of the
wavenumber plane 1s infinite! This paradoxical result arises because no

allovance is wmade in the formulation for the weak interactlon of the sound
fleld of a turbulent source element with the turbulence through which it
propagates so that 1t does not decay fast .enough with distance for the
integrated contribution from distant acoustic sources in the infinite plane to
be finite. Alchough damping of the sound field due to turbulence is a slow

-2
process, over a distance O(M 1) where A is the wavelength of sound, it is
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signiflcant enough to make the integrated contribucion bounded {Crow (1967)):
the effect of viscous surface shear also acts over a comparable distance (Howe
(1979)). At low Mach numbers, the distances involved are rather large and {f
the turbulent boundary layer extends over a reglon with typical dimension

.2
L << M X, the damping can be ignored and the neglect of interaction of sound
with turbulence in Lighthill's formulaticn is Justified, For a finite value of
L (Ffowes Williamsz 1965, 1982; Bergeran 1973; Howe 1987), the singularity at
the acoustic wavenumber is integrable. Avay from the acoustic wavenumber,
Ix2 - wi/c?| >> w/el, the spectrum colncides with that for the infinite plane.
The coefficient of the point pressure spectrum is proportional to leg(wL/c).

Here we consider a turbulent boundary layer flow over a smooth fonfinitely long
rigld cylinder of radius a and determine the assecclated cross-spectral densicy
of surface pressure using the Lighthill formulation (c.f. Dhanak (1988)). OGur
principal aim is to investigate how the cylindrical geometry may modify the
nature of the power spectrum in the vicinity of the acoustlc wavenumber from
the known form for a plane rigid surface in the absence of any acoustic damping
by turbulence or wviscosity. The turbulent boundary layer is assumed to be
statistically stacionary, transient motions based on initial conditions having
decayed away. An expression for the cross power spectral density of surface
pressure s obtained in terms of a product of a resporse function associated
with the cylindrical geometry and a term essentlally {involving the source
functions; viz.,

* 2 33 K (va) ,

P (k,n,w) = -"oUCA |==——1 R{k.,n,w)

-rKn('ra) -

where po.is the fluid densirty, Kn are modified Bessel Euncflons, ¥? - k2 - w2/c?

and R contains the source terms. 1In the appropriate limit of letting the radius
of the cylinder become infinite, this expressien reduces to the correspending
exprassion for en infinite plane surface,

For a cylinder, the radiative domain corresponds to the strip |k| = w/c, where
k is- the streamwise wavenumber (see Figure 1). For low wavenumber
consideracions, the term Lnvolving the source functions is expected to be
well-behaved (see Bergeron, 1973) and the nature of the spectrum is principally
governed by the response function. If n/a denotes the azimuthal wavenumber,
then for n/a = 0, the response function has a logarithmic, fintegrable,
singularity at the acoustic wavenumber. For n/a » 0, the response function has

. H :

finite peaks at x = tnm where w?/c3 - n2/5? > L w2/c?; the peaks becoma
broader and lower with inecreasing value of n/a. Away from the peaks, the
response function i{s well-behaved and decays to zerc as |x] = =. Thus, again
in contrast to the case of the infinite plane surface, the low wavenumber
contribution to the point spectrum is finite.

It is shown that for a cylinder of large radius (a >> ¢/w), the coefficient of

-4 /3

the peak value of the pressure spectrum is proportienal ta M*{wa/U)Zn / and

2
the width of the peak is O(n /’/a). Further, away from the peak, the spectrum
coincides with that for an infinite plane surface. Thie suggests that for an
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almost plane cylinder, the effect of finite curvature may be allowed for by

approximating the response function by wi/c?(|x2(l - 8?) - w2/c?| + u’ﬂ’)'l
-1/73

where 8 is O0(({wa/c) / ) and varies with the wave-vector angla. Then, for

-2
non-zero values of n/a, the response function has a peak value g and peak
widch 0{8). For n/a = 0, the approximate response function is singular ac che
acoustic streamwise wavenumber. However, the low-wavenumber contribution te

23 4 /3
the point spectrum is finite, being O(puUcAH log{{wa/c) / ). This contribution
corresponds to that from equivalent turbulent sources distributed over a finite

173 .

plane dise of radlus L = 0(a ’ (w/e)”'/®). For this value of L, L'  1is the
exponential decay rate of creeping rays on a cylinder (Jeones (1979)). Thus the
point pressure spectrum is finite, the dominant lov wavenumber contribution to
the point spectrum belng due to creeping rays emanating from turbulent sources
within a distance L (measured along the surface of the cylinder) of the peint.
It may be noted that the contribution implied by ray theory from sources in
line of sight of the point corresponds to that from equivalent sources
distributed over a plane disc of smaller radius L = 0(/aA), waA/c being very
small for lew Mach number flows. Hence, in approximating the low wavenumber
contribution to the point spectrum or sound Intensity it is insufficient to
consider individual contributions merely from turbulent sources directly in
line of sight of the point; the creeping ray contribution from sources out of
the line of 'sight also needs to be considered, it being the dominant
contribution.

The results are consistent with that obtained, independently, by Howe (1987)
vhe considered the effect of general surface curvature (in both streamwise and
transverse directlons), on the singularity at the scoustic wavenumber. Having
identified the dominance of the creeping ray contribution to the spectral pesk
at the acoustic wave number, he evaluates the leading order effect of gemeral
wall curvature. One consequence of having a general curvature is that the
logarithmic singularity corresponding to axisymmetric apectral elements in the
case of a cylinder, referred to above, is removed and the spectrum is finite
everywhere. ’

It is shown that the intensity of radiated sound for turbulent flow past a

cylinder of large radius cen be estimated as

(]
u

1~ o[pogﬁ- fog(Ma/8)

This work waz carried out with the support of the Procurement Executive,
Ministry of Defence.
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Fecas 1. (a) 'l‘vyleal fixed- fnqueney croms- -yeetnl density of pressure on s plane surface with
&, = 0. The radiative domains in the plane for the plane surface and for & circular
cylinder are shown sbove. (5) The courdinate system.
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