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INTRODUCTION v

There is currently a great deal of interest in adaptive methods which are able
to resolve closely spaced acoustic sources incident on an array. A large number
of algorithms have been proposed, ranging from Minimum Variance (or Maximum
Likelihood Method (MLM), and Maximum Entropy to eigenvector methods. It is
generally accepted that eigenvector methods have good resolution properties.
and there is currently a great deal of research on these methods.

Most eigenvector methods are based on the orthogonality between the noise sub-
space and the incident direction vectors. This orthogonality is only an
asymptotic property, but nevertheless most eigenvector methods do have good
resolution properties even when a relatively small number of time samples are
available. The most popular eigenvector method is the MUSIC method (flyltiple
§lgnal glassification) proposed by Schmidt [1] and Bienvenuand Kopp [Z]. Other
methods have also been proposed, and the Kumaresan and Tufts (KT) [3] algorithm
does have goodresolution properties.

The present paper is concerned with using the source subspace. Asymptotically.
this subspace will contain all of the information about the signals. Although
this is useful. it is not particularly easy to make use of this fact. The
difficulty is that individual eigenvectors align themselves to be orthogonal.
and so the direction vectors will not. in general, be equal to the eigenvectors.
However, it has been shown [4] that the eigenvectors are related to the signal
directions by a unitary matrix, and it is this property which will be used
in this paper.

The direction vectors may be obtained by rotating weighted eigenvectors. but
unfortunately there are an infinite number of possible rotation matrices to
choose from. In order to identify the direction vectors correctly, it is
necessary to specify additional prior information. In this paper. the additional
information is supplied by the Varimax criterion [5]. This criterion was
originally used to interpret psychological data, and as the name suggests,
the criterion is_normally maximised. In the present approach. the same criterion
is used but the function is minimised.

EIGENVECTOR ANALYSIS

Consider an arbitrary array, having p sensors. with R sources incident on the
array at one particular frequency, w. The data from each sensor is passed

. through a FFT processor and the complex valued frequency output for frequency,
w. forms an element of the data vector 1:-

1 a X xjhj-l-E (l)
i=1

Let the k incident signals, xj, have power o’j and have direction vectors, h.1-
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Since this is a frequency domain representation, the direction vectors will

consist of complex exponentials with exponent proportional to the time delay

suffered by signal. x., for a particular sensor. The vector, 2, represents

additional noise caused eitherby sensor inaccuracy or the background ocean

environment.

Consecutive vector FFT outputs, yl.y1..., may be used to form a sample to-

variance matrix.

_l+x—Mw (z)

where Y .= [X1112

Asymptotically (i.e. for large M). R may be written as:

R = a’R +DD+
0‘

where R is the background noise correlation matrix and D is 3 (wk) direction

matrix aefined as:

D = [aiflnfizflz akhh] = (Eng: dk]

R may also be represented by aneigenvector decomposition

R = 0212 + R 5AM}! 5* (3)
o o o

where A is a (pxp) matrix of weighted eigenvectors of R°.!fRR°-§:

A = [Ml-u2 5,; Ara: 5, JAk-o’ 5k]

and Re! is a Cholesky factor of Re.

In general. the direction matrix. D, will be related to the eigenvector matrix

A, by a square (kxk) matrix B:

_' iD RD A a (A)

where B satisfies BB+ = I. For the case, k=2; it is shown in [h] that B may

take the form

cosB , —sin9eJ5

B = 36 (5)
sinee- , case

The matrix ROAA is easy to obtain, but difficult to interpret. The direction

matrix. D. is easy to interpret; but cannot be found unless wesupply additional

prior information. If we could specify B with the aid of additional information.

this would enable D to be estimated.

The MUSIC algorithm estimates signal directions by seeking directions (8)

which maximise:
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as) = T—J——-2 (a)

E [flemo‘hgi]
i=k+l

This algorithm supplies the necessary additional information by specifying

the expected family of direction vectors h(e). It is easy to show that max-

imising f(e) is exactly equivalent to maximising 3(8):

8(a) = memo-“ASA; Ra'lme) (7)

where As = (£1; g, ... 5k]

This is the Bartlett Principle component method [6]. It is interesting to

note that 3(9) may be rewritten

3(a) = (h+(B)R°'!+ASB)(B+A +Ro-!h(e))

= n+(e)D,D,*g(a) =

i

we) (a)
1

Note that D1 is closely related (but not equal) to the matrix D. The Bartlett

method (and hence MUSIC also) may be seen to average the responses of all

of the source eigenvectors. By comparison. if the matrix B could be found,

it would be possible to find the responses,g 2(B), of individual direction

vectors in order to interpret the signal directions.‘

PRIOR INFORMATION

It has been seen that the MUSIC method makes use of additional information

contained in the family of possible direction vectors. An alternative method

of including additional prior information is to postulate many different

rotation matrices and reject direction vector estimates which are not con-

sistent with the prior information.

lI
[‘

~.
—1

’r
m

It has already been stated that the direction vectors will consist of complex

exponentials representing the time delays for particular incident signals.

One of the properties of such exponentials is that the moduli of all the

terms in a given direction vector should be identical. This would be exactly

true asymptotically and will be approximately true in the small sample case.

If the moduli of the individual direction vectors are equal, the quantity

o defined by:

k p .
¢ = E E (midi-31v (9)

i=1 3:1
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P

' _ l 2where di — p E ldjil

1‘1

will take the value zero. This is the Varimax criterion [5] and by minimising

the quantity we are seeking vectors, gi, which approximate complex exponentials.

For the two signal case. the rotation matrix B only depends on two parameters.

8 and 5. These parameters may be varied until the Varimax criterion is mini-

mised. When the criterion has reached a minimum, it is assumed that the

correct rotation matrix has been found.

DIRECTION ESTIMATION

Once the rotation matrix has been estimated. it may be used to calculate

direction vectors. g.. The directions corresponding to these vectors may be

estimated in a number of ways.

One direct way of estimating the signal direction is to Seek a 6 that maximises

sj(e) = [5*(e)gj-|1 (10)

In general, this function willhave a global maximum in the signal direction

and local maxima in many other directions. This technique is reliable but

is liable to be very expensivesince the maximisations need to be performed

for all of the k signal direction vectors,

An alternative way of estimating signal directions is to attempt to interpret

the phase information contained in the direction vectors. This may be achieved
by taking logarithms of the elements in vectors g.. For example consider that

the array is linear with equispaced sensors (spacing = x). Then g1 will have
the form

gil. = oiej¢1 [l,eju1,ejzui. _ 33(P‘1)fl1]

2nxcos e
where ai = A i

Taking logarithms of the individual terms. gives imaginary parts of the form

[¢ip¢£+fii,¢i+20i --- ]

which may be plotted as a straight line to obtain the slope c.. However, before

the points may be plotted. it is necessary to restore the multiples of Zn
which are lost in the circular phase representation. This process is called

phase unwrapping [7]. The authors believe that the phase unwrapping task

is simpler than seeking a global maximum of a multimodal function.

The above example was for a linear equispaced array. but the technique may

also be applied to other array shapes, although the phase unwrapping is easier

to accomplish if the array has at least some portions which are straight or

nearly straight.
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RESULTS

This section demonstrates the techniques described in this paper by consider-
ing a number of examples. One of the most important properties of the rotation
method is its ability to resolve closely separated signals. The following
simulation was implemented to show this.

A ten element equispaced line array with omidirectional sensors, at a frequency
corresponding to an element separation of A/S, was assumed. Two plane wave
signals were modelled with additive uncorrelated sensor noise. The signals
have wavenumbers of 0.12 and 0.16 with power of OdB and ~3dB. the background
noise power is OdB. Sampled data sets were then formed for this situation,
each set of data was obtained from one hundred sets of random data. Even
though the array is equispaced no Toeplitz assumptions are made so the results
should be similar to those expected when using non-equispaced arrays.

Figure 1 shows the MUSIC spectra for the first ten samples. It is clearly
very difficult to locate the signaldinxtkn.rhe same ten samples are used
in Figure 2 where the KT algorithm [6] has been implemented. These spectra
exhibit superior resolution to the MUSIC spectra. One hundred sampled wave-
number estimates after rotation and phase unwrapping are shown in Figure 3.
The two signals have been resolved. and are in approximately the correct
directions. The first ten direction estimates compare well with those obtained
using the MUSIC and KT methods.

An important feature of rotation that has not been discussed in this paper,
is its ability to perform well in the presence of phase and amplitude errors.
This was addressed in a previous paper [3] and the performance of rotation
was shown to be very superior to both the MUSIC and KT techniques.

The evaluation of the correct rotation parameters requires the minimisation'
of the function described in equation (9). For the two signal case it is
possible to plot this function. In this simulation we assume two signals
at wavenumbers 0.12 and 0.16 with a background of power OdB. Figure 4 shows
a typicalplot of l/¢ against e and 5 from a set of sampled data with both
signals having power of JdB. It is very easy to detect the large maximum.
If the powers of the signals are reduced to -lOdB, the plot of llo presented
in Figure 5. demonstrates that at this signal to noise ratio the function
is very difficult; to optimise.

Although the phase unwrapping algorithm implemented in this paper is sub-
optimal, it is very quick and its performance has been acceptable. The
alternative to phase unwrapping is to locate the global maximum of the function
in equation (10). Figure 6 shows two beam patterns obtained from sampled
data. for signals at wavenumbers 0.12 and 0.16, having powers of -3dB with
a background of OdB. It would be difficult and expensive to perform a global
maximisation of this function. At this signal to noise ratio the phase
unwrapping algorithm performs very well. For the same sample used in Figure
6, the wrapped phase for one of the signal directions is shown in Figure 7.
After phase unwrapping a least squares fit may be used to obtain a signal
direction estimate. this is illustrated in Figure 8.
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CONCLUSIONS

It has been demonstrated that source eigenvectors may be rotated to yield

the incident direction vectors. This rotation may be accomplished using a

criterion which gives preference to vectors with constant modulus. Simulation

results have demonstrated the effectiveness of the technique.
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FIG. 1 : 10 MUSIC spectra
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FIG. 6 : 2 Beam patterns
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FIG. 8 : Unwrapped phase
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