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INTRODUCTION

Eigenvector methods are generally very effective at resolving closely spaced
signals. Two the the most widely used techniques are the MUSIC algorithm [l]
and a more recent method proposed by Kumaresan and Tufts [2]. The signal
directions are extracted from such techniques by performing a multimodal search
in a single dimension. i

The majority of eigenvector methods rely on the asymptopic orthogonality of the
signal direction vectors to the noise subspace eigenvectors. This paper will
assume a more direct approach which relies on the properties of the signal sub-
space eigenvectors. The signal eigenvectors will be rotated, so that they more
accurately represent signal direction vectors. This allows the resolution of
closely separated signals [3] even in the presence of phase and amplitude errors
to which eilgenvector methods are very sensitive [4]. The technique may also be
used for on-line sensor calibration. ' '

One of the features of eigenvector methods which makes them particularly
attractive is that they may be applied to arrays of arbitary geometry. This
important property is also true for the rotation method described in this paper.
Unlike eigenvector methods the proposed rotational algorithm retains a multi-
dimensional search, but the rotation effectively makes each of the searches
independent. This problem is simplified in practice by the exponential structure
of a single direction vector. ‘

The rotation technique is closely related to the Varimax [5] algorithm and its
application to this particular problem is described. A method that allows on-
line estimation of phase and amplitude errors is also presented. The effective-
ness of the methods described in this paper are demonstrated by a number of
simulations.

EIGENVECTOR ROTATION

For an array of p sensors with arbitary geometry we assume a complex data vector,

¥i-

k
y= 1] = h +n

where the k incident signals {x.} have power {0j2} and are from directions
{E:}rE_iS an uncorrelated sensor noise vector having power 62 on each sensor.

Using the sensor data, y, a (pXp) covariance matrix R may be estimated, which
ideally should have the form

R = g2 + DDT (1)

where D is a (pxk) direction matrix defined as
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D = [012110222, "”Okhk] = [QJ,QQ, ceey Qk]

R may also be represented by an eigenvector decomposition

R = 0%I + AA (2)
where A is a (pXp) matrix of weighted eigenvectors

A= {/(xl—cz)gl,/(xz-o2)§2( .../(xk—cz)gk}

The source eigenvectors are easily obtained but their information is difficult
to interpret, unlike that contained in the direction matrix. Generally the
direction matrix D will be related to the eigenvector matrix A, by a square
(k%k) matrix, B '

D = AB : (3)
For the case k=2 it is shown in [4] that B must take the following form

cosb, —sin ei
» (4)
) -14
sinfe #cose

Two eigenvectors may now be rotated for particular values of 0 and §. Obviously
those values of 6 and § which generate the correct direction matrix D are
unknown. In order to evaluate 8 and § consider minimising the quantity ¢,
defined by:~

k
o= 1 1 (lay | (5)

i=1l j=1

If the_ﬁgf} are vectors of weighted complex exponentials then the ‘d..‘z will
equal di, and ¢ will be zero. Since ¢ is a. positive definite functioglthis
defines a unique set of d,. The quantity in (5) is the Varimax criterion
proposed by Kaiser [51, E%cept here it is only meaningful to minimise it. No
analytic solution for the minimisation of ¢ exists, but a simple iterative
solution may be implemented.

2

In order to evaluate A the maximum likelihocd estimate for ¢“ should be chosen

[6]. This can be shown [3] to be given by:-

where u, are the eigenvectors of a covariance matrix sampled from R.

Having évaluated the rotated vectors {d,} it is necessary to interpret them.
This may be accomplished by conventional beamforming of the vectors {d,} or by
phase unwrapping. The later technique will be explained in more detail in the
‘next section.

Practically of course it is likely there will be more than two eigenvectors of
interest. The techique can be easily extended to higher orders as is shown in
[4]. When for example k=3, there are six unknown parameters, and using numerical
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techniques they can be easily evaluated. This is one approach, but an alterna-
tive solution may be obtained by rotating the eigenvectors two at a time in a
cyclic fashion until satisfactory convergence is obtained. This is the approach
which is widely used in Varimax rotation [7].

A number of assumptions are made during the design of array processors. In most
situations some of these assumptions are false, and it is important that
techniques should tolerate these defects. Some of the most common assumptions
are listed below:

a. Sensor positions are known precisely.

b. Sensors are calibrated so there are no phase or amplitude errors across the
array.

c. Sensors have an ommidirectional response.
d. Wave fronts are planar or have a simple geometric property.

High resolution eigenvector techniques tend to be very sensitive to these
conditions, particularly to phase and amplitude errors. If they are not
satisfied, especially when more than one signal is present the performance of
such methods is impaired.

The major advantage of eigenvector rotation is the lack of prior information
required. The only assumption made is that the signal directions are expected
to be complex exponentials, and none of the properties in (a-d) need to be
satisfied. Phase effects have precisely zero effect on the rotation criterion
in (5) and amplitude effects have a small but unimportant outcome.

The vectors {d } may be found without making any assumptions about array geometry.
It is p0351ble, given strong enough SLgnals, that these vectors could be used
to identify sensor positions.

SENSOR CALIBRATION

Generally sensors are liable to be corrupted by random amplitude and phase
perturbations [7]. The lack of prior information required allows the technique
given in this paper to provide a simple but effective method for on-line
estimaticn of amplitude and phase errors.

If random calibration errors are present they may be represented by modelling
a perturbed covariance matrix, RP, given by -

R = PRP' ' (6)
p .

where P = diag ((l+a1)elwl, .. (l+ap)e1wp),
aj and w are amplitude and phase perturbations respectively

ConSLder first the case where {a.} are zerc. It is then easily shown that the
perturbed eigenvectors {§ 1} are gelated to the eigenvectors {§} of R by the
following expression

E =K
-

Consequently the eigenvector matrix A becomes PA and the direction vector matrix,
D, becomes PD.
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For simplicity we now consider a simple example where the array is linear and
equispaced so that Ej is written as,

—104

J e_:L (p—l)ot'j}

] e e ey

ht =1{1,e
—J

Taking natural logarithms of the kth element of Pgﬁ gives,

ln(Pdkj) = l(wk + (k-l)uj)_+ 1n (Ck) (7)

where C, is a real constant. If the phase term is unwrapped and plotted against
k, a straight line results with slope a,, if the y, are zero. Using a least
squares fit to estimate o, and calculating the individual errors from this
straight line provides si%ple estimates for the wk.

In the presence of amplitude errors, the previous analysis no longer applies.
We can now only equate the physical model of equations (1) and (6) with the
eigenvector decomposition of equation (2), giving

poplp = AAT

Equation (3) is now replaced by the following equation

PD = AB ) (8)
Equation (8) now applies fof phaée perturbations, amplitude perturbations or

both.

The real values of Ck in equation (7) are now given by

C =g, (L + a
i

k k)

The parameters a, can now be estimated by calculating a sample mean, where,
c, - C

a =X C-

c

g | ==

i e
k=1 k

In this manner both phase and amplitude errors may be estimated. The techniques
do not exactly cancel these errors, but they are substantially reduced. For
phase errors it is possible to cancel all except an irrelevant constant term,
and a gradient term which causes a small offset in terms of wavenumber (causing
or bearing error).

The various measurements made in factor analysis may have widely different
scaling values. These variations especially if large can degrade the
performance of the Varimax technique and Kaiser proposed a modification to the
basic method using the concept of communality to account for this phenomena.

In the absence of any amplitude errors, we may define communalities, Z,, which
are equal for all values of j:- )

k
- lagl . st

i=1
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When there are amplitude errors {a,} present, the communalities are unequal and
given by, J

k
z2=(L+a)%2 ) o2, 3=1,...,p
J SR S

However, the communalities are unchanged by rotation [7] and so

K .
z§ = izl O, - 02)!€ji!2 , 3 =1,...,p (9)

The values d,; are now normalised by dividing with z, calculated from equation
(9). This rdimoves the bias in the minimum of ¢, which is caused by having
unequal communalities. The amplitude errors, a,, are normally much less than 1,
hence the effect is only a small one. Hence it is not usually necessary to use
this modified procedure.

RESULTS

To illustrate the effectiveness of the technique, consider a ten element equi-
spaced line array with omnidirectional sensors, at a frequency corresponding to
an element separation of A/5. Two plane wave signals are assumed to be present
with additive uncorrelated sensor noise. The signals have wavenumbers of 0.12
and 0.16, relative to a Nygquist wavenumber of 0.5. Although the array is
equispaced no Toeplitz assumptions have been made and so the result should also
by typical for arrays with similar geometries. Each sampled data set is assumed
to have been obtained from 100 sets of random data.

Figures 1-3 examine the resolution properties of the present method and compare
them to the MUSIC and KT technigque. Each signal has a SNR of -3dB, and there
are no phase or amplitude errors present. The 10 sampled MUSIC spectra shown

in Figure 1 are not able to resolve the two signals. Figure 2, for the same

10 samples shows the KT spectra. It is clear that the two signals have been
resolved, although in some cases the maxima may be difficult to locate. Some

of the spectra present rather large spurious peaks, which is clearly undesirable.

One hundred sampled wavenumber estimates after rotation of the signal eigen-
vectors, phase unwrapping and linear least squares are given in Figure 3. It
is clear from these discrete estimates that two signals are present and in
approximately the correct directions.

If there are phase and amplitude errors present, signal direction estimation

is obviously more difficult, as presented in Figures 4-6. Each. signal is again
assumed to have an SNR of -3dB, with phase and amplitude errors, created by
using Gaussian random variables with variance of 0.1. It is clearly

impossible to discern two signals from the 10 sampled MUSIC spectra shown in
Figure 4. The performance of the 10 KT spectra shown in Figure 5 has also been
degraded by the introduction of phase and amplitude errors. It is now difficult
to infer anything meaningful from the information presented in Figure 5.

Figure 6 gives the 100 wavenumber estimates after rotation phase unwrapping and
linear least squares. The results as expected are worse than those shown in
Figure 3, but it is still possible to see two distinct signals. For the results
shown in Figures 4-6, each result has been obtained from the identical set of
phase and amplitude errors. This is the cause of the slight wavenumber bias
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which can be seen in Figure 6. It is easily seen that the rotation method is
insensitive to phase and amplitude errors, compared to the two eigenvector
techniques.

To demonstrate the effect of phase and amplitude errors on systems performance,
we consider two examples using an exact covariance matrix. Gaussian random
variables with variance 0.l are used to create phase only and amplitude only
perturbations. Two signals are present, having wavenumbers 0.12 and 0.16 each
with an SNR of 10dB. Figure 7 shows the unwrapped phase after eigenvector
rotation for the case when only phase errors are present. A least squares fit
is also shown for both direction vectors. The two gradients give estimates for
the two signal directions as 0.125 and 0.165. When there are only amplitude
errors, the results are given in Figure 8. It is clear that the amplitude
errors have no affect on wavenumber estimates, and the gradients given perfect
estimates for the signal directions.

The individual errors from the least squares fit in Figure 7 may be used to
obtain estimates for the phase errors. These errors are given in Table 1,
together with the true phase errors. Because of the small wavenumber bias, the
phase errors are not cancelled exactly, but it is seen that the errors lie on a
straight line. This is caused by the incorrect slopes of the two curves. The
same information for the amplitude only case is presented in Table 2.

CONCULSIONS

An eigenvector rotation method has been presented which uses source rather than
noise eigenvectors. It has been demonstrated that this method enables good
resolution to be achieved in situations which are totally unsuitable for eigen-
vector techniques such as the MUSIC and KT algorithms. The method may also be
used to simultaneously estimate sensor calibration errors.
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FIG. 1 MUSIC spectra FIG. 4 MUSIC spectra with errors
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FIG. 7 Phase errors only TABLE 1 Phase errors
1o Actual |Bpparent {Ac-Ap
g- / 0.758 0.391 0.367
81 . e 0.144 | -0.174 | 0.318
7 0.442 0.173 0.269
86 . o * 0.092 -0.127 | 0.219
?55 | : : 0.132 | -0.038 | 0.170
314'_ -0.095 -0.215 0.120
93 -0.682 ~0.752 0.070
EFR 0.140 0.119 0.021
Bl 0.460 0.488 |-0.028
o O 0.037 0.134 ]-0.077
o1 2 3 4 5 6 7 8 9
Sensor
FIG. 8 Amplitude errors only TABLE 2 Amplitude errors
10 Actual Apparent | Ac-Ap
9 1 ‘ 0.710 0.495 0.215
8 1 , -0.035 -0.170 0.135
~7 7 0.130 -0.049 0.152
26 - 0.407 0.217 [ 0.190
95 : 0.595 0.385 0.210
Ea ] 0.053 -0.091 | o0.144
©3 A 0.176 0.017 0.159
82 -0.258 -0.363 0.105
b ‘ -0.017 ~0.152 0.135
o e — -0.170 -0.289 0.119
o 1 2 3 4 5 6 7 8 9
sensor
Ac-Ap = Actual - Apparent.
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