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1. INTRODUCTION

The MUSIC algorithm was proposed 10 years ago. Since then, numercus authors have
proposed algorithms which are claimed to be superior in some way. However, in spite of
all this research, the MUSIC algorithm is still generally regarded as the most effective for
arrays with arbitrary geometry. Later methods have generally not been accepted because of
the following reasons.

(1) Additional prior information has been assumed. A common example of this is a
Toeplitz assumption for linear equispaced arrays. In addition to the geometric assumption,
this assumes that there is no multipath present. Consequently, any method based on this
assumption will perform very badly if the signals are correlated.

(2) The array shape is restricted in some way. An example of this, is the linear
prediction methods which assume linear equispaced arrays. Although these methods are
useful, many arrays do not satisfy this requirement.

(3) Very costly iterations are required. These methods make a general purpose
processor very expensive to implement, and there is sometimes a question about
convergence, Examples of these methods are Maximum Likelihood methods, which
generally have good performance, but are often very expensive to implement.

(4) Some methods are notoriously sensitive to modelling errors. The MUSIC algorithm
is not particularly. good on this point either, but some methods are much worse. These
errors are very likely to occur in many designs, and so this is a very important feature.

(5) The noise statistics are assumed to be known exactly, or the noise is assumed to
be uncorrelated. For many applications, these assumptions are false, leading to severe
degradation of performance.

(6) Some algorithms give performance which is very similar to MUSIC, and so there
is no real benefit. In order to be worth accepting, any method needs to have either a
significantly lower noise threshold, or a lower variance (and preferably both).

The present paper presenis yet ancther method, but the author believes that this
algorithm could replace MUSIC, since the method makes no additional assumptions, is not
iterative, and gives a substantial improvement in the noise threshold (~10dB).

We will assume narrow-band processing, but not make any assumptions about array
shape. There should be no difficulty in extending the method to the broad—band case. For
convenience we willi use a linear, equispaced array for the simulations. With this type of
array the direction vectors will be of the form:

hfa[1,exp(-p),exp(-2p), ..., exp(-(p-1)p)] (1)

where
p = 2xjdcos(0) /X -
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with element spacing (d),wavelength ()\), and incident angle (8). In some cases we will use
several (k) direction vectors simultaneously, and use the notation.

H"['—’1 h, .. b—k] (2}

The task is to identify the directions of arrival, when the data y; has been formed
from:

yi = Hx +n
where x; are the incident signals, and n; is a noise vector.
2. BASIC PRINCIPLE

Consider a p-element array which has received N snapshots of data. We may form
a p x N data matrix, Y.

Y=1[¥ ¥ ¥ .- ¥ /AN (3)

Reilly and Wong [1] have used Bayesian analysis to show that if the noise covariance
matrix is unknown, the correct direction vector matrix, H, minimises:

deto[ (1 - H iy - HhHR(L - 0 Wiy Wiy ) (4)

where R = Y YT, and det, denotes the product of all the non-zero eigenvalues. The
important property is that no knowledge of the noise covariance is required, or assumed.
Unfortunately, this algorithm is extremely expensive. The approach taken in this paper has
many similarities with Equation (4), but at greatly reduced cost.

If there is no noise and there are k signals present, the rank of the matrix ,Y, will
be k (assuming N3k and ppk). With uncorrelated noise present the first k singular values
should be larger than the remaining singular values { min{p—k,N-k) ), which should have
singular values approximately equal to the standard deviation of the noise.

A rank of k for the noise—free case states that the matrix may be written in terms
of k independent components. Alternatively, we may express this in terms of the
covariance matrix, R. With k signals, these components may be described solely in terms
of k eigenvalues and vectors, so that

R=UZut (5)

where I i8 a diagonal matrix of eigenvalues,);, and the columns of U contain the
eigenvectors of R. The signal components may be described by

Rg= U UT (6)

where L and Ug contain the first k eigenvalues and eigenvectors of R.
Now consider the eigenvalues of the matrix (c.f. Eqn. (4))

R = [(1 - H (HtH)-1 WhHRg] €))

where H contains k signal direction vectors, If these directions are all correct, all of the
signal components will be nulled out, and only noise will be left. If only k, directions
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are correct, the matrix will have (k—k,} 'large' eigenvalues and k, small eigenvalues {(at
noise level). In principle, we could search all possible directions and inspect the
eigenvalues for all of these directions. To avoid iterations, we would like to have only one
direction vector, h, and perform a single scanned output. This suggests that we find the
eigenvalues of the matrix

Ry = [(1 - h (hth)-" hD)Rg] . (8)

We now note that when h is a signal direction there will be (k-1) ‘large' eigenvalues. We
therefore need to inspect the k'th eigenvalue of Equation (8). When we are in a signal
direction, this eigenvalue will decrease to noise level.

' This has removed the need for iteration, but the process stillappears to- be extremely
-expensive, because we need to calculate the eigenvalues for all directions. We will now
show, however, that this is not as difficult as might be supposed. In order to keep the
~résults general we will calculate the k'th eigenvalue of Equation (6). The eigenvalues are

given. by the roots u of the equation.
det[ (1 - h (hh)~" hDRg-pu1] = 0 (9)

Using the definition of h (Equation (1)), hfh = p, it is easy to show that this may be
rewritten [2)

p - hiUgZg(Ee-p1p) -0 fh = 0 ' (10)

which can be written -

AoIBpE ' (an
51 OG-0

where f; = l_ngi, and u; is the i'th eigenvector. We are particularly interested in the
smallest eigenvalue pj which should decrease rapidly (down to the noise level) near to the
correct signal directions.

We may multiply out Equation (11) to obtain

) =

P

k .k k
P Ovmpgd - 3 MtBit2 0 Oj-pg) = 0 (12)
i=1 i=1 j#i

where 1 denotes product. We are interested in the smallest root of this Equation. If we
expand in a power series and discard high order terms we find

k
P - J 1817
i=1
1 (13)
k
P W - 3 W 18512
i=1

where

71

Proc..O.A. Vol 11 Part 8 (1989)




Proceedings of the Institutue of Acoustics

HIGH RESOLUTION BEAMFORMING

k
Wi = 3 1/)\j (14)
j#i
Jj=1
This expression may be compared to MUSIC, which is given by
k
f(e) = 1/ p - 3 18512 (15)
i=1

There has been a great deal of interest in the weighting of eigenspectra [e.g. 4].
However, Equation (13) is very novel, in that the numerator is identical to MUSIC, but
there is also a denominator which has weighted components. It will be seen that this
Equation yields very impressive simulation results. However, we may improve the results
further by artificially enhancing the signalto-noise (SNR) ratio. At high SNR, all of the
signal eigenvalues become very large. We can therefore enhance the performance by
setting the largest eigenvalues to infinity. If we have k; ‘large' eigenvalues, the weightings
then become:

k
Wi = ¥ 1/% (16)
J#i
j=kL+1
This paper recommends the weightings given in Equation (16) if we require

resolution. However, the weightings given in (14) generally lead to more accurate diection
estimates, but with reduced resolution performance. However, it is quite possible that
different weights might have even better performance. One reason for this is that Equation
(16) was derived on the assumption that the signal directions can be detected by changes
in the k'th eigenvalue of Equation (9). This clearly has very good performance, but at
low SNR we can expected significant leakage between eigenvalues, and a different
weighting might be able to restore this information.

3. SIMULATIONS AND DISCUSSION.

In this section we will explore the performance of Equation (13) with the weightings
given in (16), under a number of situations. We will concentrate on determining the
improvement in the threshold performance, since this is probably the most important
property. We will base the simulations on the following example:

{a) 10 element equispaced array (half-wavelength spacing).

{b) 3 signals:

80 degrees (0 dB)
83 degrees (0 dB)
60 degrees (—-10 dB)

We will vary the uncorrelated noise power, and examine two exteme cases. First we
will use only 5 snapshots, and then we will have a high signal correlation. To provide
some statistical stability and yet visualise the results, we plot 10 examples for each case.

In all of the examples, only the largest eigenvalue will be omitted from the weights in
Equation (17).
We will use a relatively small number of examples, so that we can plot the
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individual results. In all cases the results will be sc dramatic, that larger numbers of
simulations are not required. .

Figure 1 explores the performance of Equations (13,16) when there are very few
snapshots. Figure 1{a) gives the MUSIC result and 1(b) uses Equations (13,16) for 5
snapshots and a noise power of -23dB. It may be seen that MUSIC usually fails, but
Equations (13,16) resolve easily. Figures 1{c) and 1{d) repeat the experiment with —13dB
noise. Equations (13,16) are again usually able to resolve, so there is at least 10dB
improvement in the threshold.

In many applications, we may expect high signal correlation, and MUSIC is known to
fail in these situations. Although the present algorithm cannot resolve perfectly correlated
signals, it can resolve them when they have high correlation. To demonstrate this, Figures
2(a) and (b) examines what happens with a correlation of p=0.98, with only 5 snapshots,
and -37dB of noise. A high SNR is required because of the high signal correlation and
the small number of snapshots. MUSIC performs badly, even at this SNR. Figures 2(c)
and {d) repeat the experiment at -27dB. Equations (13,16) again shows the 10db
improvement in performance, with most cases being resolved. Some of these plots are
relatively smooth, but still most contain minima in the correct directions. This smoothness
is because the 3'rd eigenvalue of R is very close to the noise eigenvalues, and so very
little variation can occur with changes in direction. With fully correlated signals, no
variation of the 3'rd eigenvalue can occur, which explains why the method cannot resolve
in this case.

These results demonstrate that at least 10dB improvement can be achieved with
Equations (13,16). This is a substantial improvement over MUSIC and should make high
resolution methods much more useful in applications.

The simulations demonstrate a significant improvement over MUSIC. Because of the
similarity to reference [1], good performance with an unknown noise covariance is also
obtained. The improvement in performance, combined with the additional robustness,
makes it a very useful technique.

Analysis in [2] demonstrates that the new class of algorithms are related to the
MUSIC algorithm, and have identical asymptotic performance. This might appear
disappointing, but asymptotic performance is not normally of practical importance. The
new algorithm can still be expected to out—perform MUSIC in applications.

4. CONCLUSIONS

A method for processing sensor arrays, based on eigenvalue spectra, has been
introduced. The method has been shown to be very similar to MUSIC in some respects
but to have superior performance to the MUSIC algorithm. The method is effective when
there are only a small number of snapshots, or when the signals are highly (but not
totally) correlated. The method appears to have a noise threshold which is 10dB lower
than for the MUSIC algorithm.
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Figure 1: Comparison of the MUSIC algorithm ((a),(c)),with
Eqns (13,16) {{b),(d)) with 5 snapshots.
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Figure 2: Comparison of the MUSIC algorithm ((a),(c))
with Eqns. (13,16) ((b),(d)) with 0.98 signal correlation
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