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I INTRODUCTION

A fundamental problem in the analysis of sonar transducers is that of modelling the acoustic radiation into
the fluid and its associated loading on the transducer surface. The use of fluid finite elements might seem
to be a natural extension to a finite-element (FE) treatment of the transducer structure; however, some way
must be found of dealing with the effectively infinite extent of the fluid, for exam le, by ensuring that the
conditions at the outer boundary of the fluid elements represent continued radiation 1,2], or by using ‘infinite’
fluid elements3]. An alternative a proach is to use a boundary-element method BEM) to model the acoustic
radiation, coup edwith the finite-e ement treatment of the transducer structure [4 . There are two immediate
advantages: firstly, the BEM inherently treats the fluid as being infinite in extent; and, secondly, the number
of dimensions is reduced by 1, since the method solves for the unknowns on the radiating surface rather than
throughout the fluid region. In addition, on a practical level, there is no need to devise any further element
meshing, as the exposed faces of the structural finite elements provide the required boundary elements.

The acoustic BEM is based on an inte al form of the Helmholtz wave equation. Unfortunately this integral
equation fails to rovide a unique sofiition at the standin wave frequencies of the region interior to the
radiating surface [)5]. One practical conse uence of. this ailure is that it can make it difficult to identify
genuine resonant reqpencies of a submerge transducer. The method chosen here to overcome the problem
of non-uniqueness is ased on the Helmholtz gradient formulation (HGF), originally proposed by Burtonand
Miller [6], in which the standard inte al equation is combined with its normal derivative form. There are,
however, difficulties in the numericafrimplementation of this formulation. The integrals contain singular
kernels; further, if advanced boundary elements are used, the normal derivative form cannot be applied at
a node lying at an edge or corner, where the normal direction is not well defined.

In the current work one requirement was that the BEM should be compatible with a finite-element analysis
using quadratic isoparametnc elements. This paper reports a scheme ap licable to such elements, in which
the normal derivative form of the Helmholtz integral is applied at the Iocal origin ( or ‘centre’) of each
element rather than at the nodes. The scheme eases the numerical difficulties, and reduces the amount of
extra comfputation inherent in the HOP. Results are presented for radiation from a sphere and from a
cglinder, or which analytical or semi-analytical solutions are available. A companion paper [7] reports on
t e use of this method in a coupled FE-BE analysis of a sonar transducer, and compares the numerical
solutions with experimental results.

2 THE HELMIIOL’IZ GRADIENT FORMULATION

The requirement is to solve the Helmholtz wave equation

vzo + k2¢ = o (1)

for the acoustic pressure 1) (with time factor 9“" understood), where Ir - w/c is the wavenumber, and c is
the sound speed in the fluid. This equation can be represented by an integral form, in which the pressure
at any point p is obtained in terms of an integral over the radiating surface 5 [8,9] :

 

BC , 3Momfl - c.(p.q) °“”}d3. = acpmp) (2)
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G. is the Green’s function. which in 3 dimensions is given by

e-lkr

5i(P.q) " m- "IF—‘1'

The value of the factor [3 depends on the position of p:

 

0 p inside 5‘

l p outside 3

MP) - exterior solid an 1g e at p
4” p on S

For p on S, with S smooth at p , [3 = g ; the more general result above, which allows for sharp

edges and corners, is given by Terai [9].

At certain critical frequencies, corresponding to the eigenvalues of the interior Dirichlet roblem, the integral

equation (2) becomes singular. A second integral equation can be formed by differentiating the first in the

normal direction at p:

3
}d3. - 13(12):?”

:)n,,¢3nq an, an,

  

an . ac .“Mm .(p q) .0» WM) (3)

5 D

This equation also suffers from singularity, but at a different set of critical frequencies, corresponding to the

eigenvalues of the interior Neumann problem. By combining the two equations, a unique solution can be

obtained for all frequencies. In the Burton and Miller formulation [6] a multiple 0. of the second equation

is added to the first. To ensure non-singularity in the combined equation, a should have a non-zero imaginary

part; a recommended optimum value is —i/lc [9].

One of the difficulties of the Burton and Miller formulation is that the first term in the integrand of equation

(3) has, for quadratic elements, behaviour of order l / r2 and so is highly singular. The problem is alleviated

by using a relationship derived by Meyer et al. [10] : -

'azc .I Lflq) r(P ‘1)ds

anpan, ‘7

826.0041)
anpan,-f3[¢(q)-¢(p)i d3. — ¢(p)fs(n,.n.)(ik)’c.(p.was. (4)

where n, and nq are the normals at p and q respectively.

3 NUMERICAL IMPLEMENTATION

3.1 Boundary element formulation 1

in the numerical implementation the presure distribution on S is represented by discrete pressures 6; at a

set of points p. (i=1 to n) on 5. By takingthe calculation point p at each is‘ in turn, nequations

are formed relating the n unknown pressures 6. to the :1 unknown pressure gradients 36./ari , and hence

to the normal velocities using the boundary condition -
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a .
3—2 B -iwpu.

(5)

where p is the fluid density. I

Because of the need to link the BE analysis to an existing FE program for the structure, quadratic quadrilateral
elements were used to discretize the radiating surface, based on the isoparametric FE formulation [11]. Each
element is defined by 8 nodes (4 corner, 4 mid-side) and is a mapping from a 2x2 square in (gm) space,
with the Cartesian coordinates and variables interpolated from the values at the nodes; for example,

men) = [MAE-11W... (6)
pl

where 5m indicates the value of d) at node [C of element m. The shape functions N k(§. n) are of
the standard form for this type of element [4,11]; these produce variables with a quadratic variation over
each element.

  
      

                 

      
   

      

       

 

3.2 Discretized form of the integral equations
With the variables interpolated as above, the standard Helmholtz integral equation can be written in discretized
form as

       nelem. a nelem. s

_Bl6l * Z] til/11min. = Z‘ “Elsi-ram (7)

 

for i = 1 to n, where   
36.034)IAm Liam) “v «is.

B'm. - flaw]: ~.(q)c.(p.q)n.d8.j r (a)

The integral for B‘,,.., , incorporating the normal vector In. , is given in this form so that the 3-dimensional
velocities '31 at the nodes can be used rather than the normal velocities, which will not be well defined at
sharp edges or corners.

  
The coefficients Al". and B}... are assembled into global matrices A and B by summing the coefficients
that correspond to the same global node. With the term -l31 included on the diagonal of A , we can
represent the standard Helmholtz integral equation as

[11]“) = [31(0) (9)

The same process is followed in discretizing the normal derivative form (3) of the Helmholtz equation, except
in one major respect. The normal derivative may be discontinuous across element boundaries, and as a
consequence the nodes are not suitable as calculation points for the normal derivative equation. The solution
proposed in this paper is to apply the normal derivative form at the local origin (5. n) -= (0. 0) or ‘centre’
of each element. For a typical BE model using quadratic isoparametric elements this provides approximately
11/ 3 calculation points. The use of a smaller number of points can be justified on the basis of work by
Harris and Amini [12], who report that the coupling parameter a in the Burton and Miller formulation
may be set to zero over a large art of the surface without adversely affecting the conditionin of the equation.
We shall use the term ‘parual elmholtz gradient formulation’ to refer to such an approacgh.
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Taking p at the centre of element 1' , and using the integral relationship (4), the normal derivative equation

can be written as

nllem. I a _ nnlcm. a ‘

Z 2(C2il’ mK—cllgf)6lk) + chkqp)$tk + ZCn‘ni) or
up“: l-‘l l-l m-I l-I

nelcm. a I 1 a a '

- Ikzlpmam + Elzlnpmo" . A (10)

where

36 (DA) 30.0141)Ito) a _E,__ - 1(a) _ o __ -
cm. LIN. anpanv ds.7 (mu). cm. N. s. anpano asq (mm).

60.034)emu) - smmfzvbmdsw cg) -= kZNgfsficdquandsv.

. 30 (Wt)D‘... - awn}; N.—‘an—n.d8.. N2 - N.(o.o) (11)
a :2

Assembly of the coefficients into global matrices leads to an equation of the form

[51(5) “ [01(0) (12)

3.3 Evaluation of the integrals
The integrals in equations (8) and (11) are evaluated by transforming to the (5J1) plane, so that for example,

A‘.. - f|f|N.(§.n)
n-AI 5-4

35.0947)an” J(§~n)dEdn (13)

where J (in) is the Jacobian of the transformation from Cartesian to ($.11) coordinates. Provided the

kernels are non-singular. numerical evaluation is carried out using Gauss quadrature. For the integrals with

singular kernels, namely 11}. and Cif“, the square in (5.11) space representing the singular element is

subdivided into triangles, using the calculation point p as a common vertex, following a technique of Lachat

and Watson [13]. For each triangle, transformation to a local polar coordinate system with the origin at p

produces a Jacobian with 00‘) behaviour, so removing the 0(1 / r) singularity in the kernel of A}. . For

the kernel 01' Cit“! the factor N.- N‘.’ is either zero or has 0(r) behaviour, so that the 0(l/r2)

singularity in azcr/Bnpan. is again removed. Evaluation of the integrals can then he carried out using

Gauss quadrature in the triangular coordinate system.

3.4 Combining the integral equations
The system of equations (9) derived from the standard Helmholtz integral equation is based on taking

calculation points at the nodes p, , whereas the system (12) derived from the normal derivative equation

uses calculation ints at the centres of the elements. The two systems cannot therefore be combined directly
as in the origin Burton and Miller formulation. The method of combination adopted here is based on the
association of each normal derivative equation with the 8 nodes of the element on which the calculation point

for that equation is located. This association is preserved by adding n times the normal derivative equation

to each of the 8 equations in the standard form which have their calculation points at those 8 nodes. From

the point of View of the standard system, this means that the i “1 row has added to it a times each of the

normal derivative equations corresponding to the elements which meet at node i. The value of a has been

taken to be -i/lrm. where m4 = number of elements meeting at node i.
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4 RESULTS

The first test case considered is that of an oscillating sphere, i.e., a sphere acting as a dipole source, for which
an analytical solution is available. Two boundary-element models were used, acoarse one of 24 elements,
and a refined one of 96 elements. Figures 1 and 2 show plots of the normalized surface pressure amplitude
at the pole of the sphere (on the axis of oscillation) plotted against the dimensionless wavenumber kn, where
a = radius of sphere. One of the critical frequencies for this problem occurs when ka = 4.493..., and the
range for ka has been taken around this value. Results are shown for both the standard Helmholtz
formulation, and for the partial HGF as described above; the theoretical solution is included for comparison.
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Figure 1. Amplitude of the acoustic pressure at the pole of an oscillating sphere vs. ka , 24-element
model : .— analytical solution; A standard Helmholtz formulation; 0 partial Helmholtz gradient
formulation.
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The effect of ill-conditioning in the standard formulation can be seen in the irregularity of the solutions
around the critical frequency. The partial HGF, on the other hand, gives consistentresults across the critical
frequency range.

The results illustrate a point noted elsewhere [14], that with better numerical techniques, such as the use of
advanced elements, the failure in the standard formulation occurs in a narrow band. Comparison of Figures
1 and 2 (note the expanded scale in Figure 2) reveals that the narrowness of the band de ends on the fineness
of the model. However, while the use of a finer model reduces the risk of ill-eontfitioning, it does not
eliminate that risk, and it requires more computing time than the partial HGF applied to the coarser model.
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Figure 2. As Figure 1, but for 96—element model.
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Testing the ca ability of the BE method for non-smooth surfaces presents some difficulty because of the
absence of analytical solutions. It is possible, however, to obtain a semi-analytical solution, in the form of a
series of eigenfunctions, for a cylinder with a prescribed velocity distribution on the surface [15]; The solution
varies in its accuracy depending on how well the velocity distribution can be represented in t e series form.
The problem considered here is that of a cylinder of radius a and length 2:: , with pistons of radius a/ 2
concentritu placed on the end faces; the pistons are oscillating in opposite directions to each other with
uniform velocity amplitude u , the rest of the surface being rigid. Figure 3compares the results obtained
using the partial HGF with the series solution; the sound pressures at a distance of 1001 from the centroid
of the cylinder are plotth a ‘ t the an lar position. as measured from the axis of the cylinder. Because
of the symmet of the probm the resu ts are shown for just one quadrant. The two solutions a ee well
over most of e quadrant; the divergence near the axis can be e lained by the tenden of e series
solution to produce higher-than-specified velocities near the centres o the pistons. It shoul be noted that
in the BE model, the element dimension (typically 0.3a) is close to half the wavelength (Ha/S for
ka - lo), beyond which the quadratic formulation ceases to be a good approximation.
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Figure 3. Sound presure amplitude vs. angular position at a distance of 10a from the centroid of
a cylinder of radius a , length 2a , with normal velocity u on pistons of radius (1/2 concentrically
placed on the end faces; ka =- 10; 104—element model: — series solution ( [15], N -= 40);
o BEM, partial HGF.
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Figure 4 illustrates how the partial HGF performs over a r e of frequency, in articular how it overcomes
the singularity problem in the standard formulation. The ra ation impedance, efined [16] by

has been chosen as it provides on overall measure of the acoustic behaviour of the surface; it has been

calculated for a uniformly vibrating piston of radius (1/2 set concentrically on the end face of a cylinder of

radius a and length 2a , i.e., the configuration is the same as in the previous problem except that only one

end of the cylinder has an active section. The real and imagipxz parts of the impedance values obtained

from the standard formulation are shown as individual points, e for clarity those from the partial HGF

are shown by continuous lines based on discrete values at intervals of 0.1 in 1:11. The irregularities in the

results for the standard formulation are not so dramatic as in the case of the sphere (Figures 1 and 2);

however, they would be a considerable nuisance in a combined FE-BE analysis concerned with finding the

resoZIances of a submerged structure. There is no sign of any irregularity in the results obtained using the

parti HGF.
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Figure 4. Radiation impedance as a function of frequency for a piston of radius a/ 2 in the end of a

cylinder of radius a , length 20 : no standard Helmholtz formulation ; — partial HGF.
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5 CONCLUSIONS

The standard formulation of the Helmholtz integral equation suffers from singularity at certain fre uencies,
and this causes irregularities in the numerical solution. The Burton and Miller formulation, w ere the
Helmholtz integral equation is combined with its normal derivative, provides a means of overcoming this
problem, but is diffith to apply in its original form if advanced boundary elements are used. Here we have
shown that app] ' g the normal derivative e uation at the centres of elements rather than at the nodes is
sufficient to renriurl the combined equation we -conditioned. This scheme, referred to as a partial Helmholtz
gradient formulation, has been implemented numerically for surfaces modelled b quadratic isoparametric
elements, and is therefore suitable for combining with a FE analysis where such eements are used [7].
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