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INTRODUCTION

The generation of sound by the interaction between a rigid edge in a stationary fluid and
an impinging plane jet has been given considerable attention for over one hundred
years.[1] However, the instability that controls the oscillation has not yet been completely
modelled so as to predict the acoustic signal emitted.[2][3] The resulting edgetones are
characterized by discrete frequencies which, when coupled to a resonant cavity, make the
acoustic source of whistles, organ pipes and some wind instruments. -

In the absence of a resonator the signal generated follows a regujar sequence of states
along several stages, The aim of this work was to examine those signals through non-
conventional methods suitable for qualitative analysis of periodicity and harmonic
generation.  In pardcular, a criterion for the distinction between quasi-periodical and
chaotic signals from experimental data was pursued.

SIGNAL DESCRIPTION
The frequency of the edgetone is controlled by the jet velocity u and the edge stand-off

distance h. For a subsonic jet-edge system in air Brown [4] proposes an empirical
formula

£=0466j (u-40)(1m-007)

where u is in cmy/s and h in cm. The parameter | takes the values 1.0, 2.3, 3.8 and 54
for the four stages observed by Brown.

Holger et al.[3] derived a dependence for f as u/h™ within each stage but the transitions
berween stages are not explained,

In our experiment the signals were generated by air supplied through a channel measuring 1.7
x 50.0 mm ‘and a 30 degree coplanar wedge, with pressure adjustable up to 4 mbar. Swong
tones are audible for distances from 5 mm up to several cm. The transitions between stages
occur as hysteretic jumps as can be observed in fig.1 which shows our results for a pressure

of 1.8 mbar.
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Free field conditions were provided in order to avoid acoustical feedback which bolsters

some states. The sound pressure signal was picked up by a 1/2" condenser microphone
and digitized at a 20,000 samples per second rate into time series of 12,500 samples.
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Fig.! Edgetone frequency vs inverse distance

At most states the signal FFT shows a strong fundamental with a 3f and other minor
harmonics. At some states, however, particularly near stage transitions, the signal exhibits
a number of harmonics which are less stable in time,

Qualitative changes of the signal occur suddenly for very small variations of the wedge
distance, and sometimes it spontaneocusly jumps back and forth from time to time.

-

SIGNAL ANALYSIS

The signals were analyzed through the phase space constructed from the pressure time
series, its first and its second derivative.[5] The Poincare sections were also obtained for
x=0 considering trajectories crossing the plane in both directions. Sections taken at
locked phase were not anempted since in this case there is no forcing signal.

A sequence of states is presented in the following figures, from a first state of stable
periodic moticn to a last state of quasi-random motion, after undergoing several
bifurcations. Phase portraits (left) of intermediate states exhibit closed orbits with period
doubling and Poincare sections (right) stretching from discrete segments to & shape that
suggests a torus. Details of a possible fractal substructure of the sections are obscured by
noise.
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Fig.2 Phase portraits, Poincare sections and waveform before bifurcation
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Fig.3 Phase portraits, Poincare sections and waveform after bifurcations
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Fig.4 Phase portraits, Poincare sections and waveform for random edgetone
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The distinction between quasi-periodic states and chaotic states was also investigated
according to the criterion suggested by Kapitaniak [6], based on the amplitude probability
function of the time series. Quasi-periodic states are characterized by distributions that
are independent of time and size of samples. Also for noisy or stochastic signals the
distribution converges as the sample size increases.

For some states the amplitude distribution changes continuously, denoting chaotic
behaviour. The distributions for ten consecutive samples were examined and they all
showed different multi-maxima pattens. The distribution for the whole series also
exhibited several sharp maxima suggesting a fractal pattern rather than random changes.

Fig.5 Amplitude distribution of a
stable edgetone

Fig.6 Amplitude distributions of w
two samples of an unstable edgetone
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Fig.7 Amplitude distribution of a
random edgeione

CONCLUSIONS

- A simple experiment is used to generate acoustic signals at different states displaying
periodic, chaotic and random features. .

- The analysis of the phase portrait constructed from the waveform time series reveal a
sequence of bifurcations.

- The Poincare sections suggest the existence of chaotic states close to the transitions.

- The amplitude probablhty distribution for these states exhibit some sharp peaks which
are dependent on the timing of the sample. :

- Extending the length of the sample does not overrun the peaks but creates another
pattern of peaks.
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