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1. INTRODUCTION

Many useful insights into the phenomenology of wave propagation through
extended inhomogeneous media have been obtained by studying the properties of a
much simpler scattering system: the random phase changing screen- This system
is of interest in its own right as a physical optics model for scattering by
thin diffusing layers and rough surfaces both in transmissive and reflective

' geometries. In recent years, laboratory measurements of the scintillation of
laser light scattered from turbulent plumes, mixing layers, mobile and rigid
rough surfaces [1] have allowed more quantitative assessment of the predictions
of a variety of theoretical phase screen models. As a result there has been
renewed interest in the physical meaning of various statistical and spectral
models and the mathematical implications of using them in phase screen
calculations or indeed in the more complicated extended medium problem.

If, as is usually assumed, the phase distortions introduced by the screen
constitute a Gaussian Process, then interest centres on the choice of phase
autocorrelation function or spectrum. It is well known that autocorrelation
functions which can be expanded in an even powered series about the origin,
such as Gaussian or Lorentzian models, correspond to smoothly varying single
scale phase functions which are infinitely differentiable. In the case of
strong scattering, when the path fluctuations exceed a wavelength, non-Gaussian
intensity patterns generated by screens of this type are dominated by geomet—
rical optics effects [2]. 0n the other hand it is now recognised that raw
power law models (is without inner and outer scales) constitute the simplest
class of multiscale screens. In this case the phase function is hierarchical,
being self-affine under magnification and can be described in the language of
Mandelbrot as a Gaussian random fractal [3]. Within this group of models
further classification according to spectral index is necessary to distinguish
between continuous functions which are not differentiable and those which are
once, twice ... or n times differentiable. Clearly the physical implication of
a model which is not differentiable will be the absence of geometrical Optics
effects: the predicted statistical properties of a scattered wave will include
only the effects of diffraction and interference [A]. On the other hand a
model which is only once differentiable will generate density fluctuations of
geometrical rays but no caustics or focusing [5]. Evidently the spectral index

tand hence the truncation of differentiability determines the maximum order of
singularity or catastrophe in the scattered wave field. In practice raw power
law behaviour is not observed in nature: often regions of different power law
index are found together with high and low frequency cut-offs (inner and outer
scale effects). The presence of an outer scale always ensures that when
sufficient area of the scatterer contributes to the wave field at the detector
then Gaussian field statistics will be observed, the exact nature of the ‘
approach to this limit being determined by detail of the low frequency cut-off-
The presence of an inner scale means that at sufficient magnification (small
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enough wavelength) the phase function will appear to be a smoothly varying

object. Note, however, that the effect of a high frequency cut-off may often

be masked at long wavelengths so that characteristics of the power law region

will be present in the scattered wave field.

It has been demonstrated in recent years that amongst the corrugated power law

models there exist special cases which can be exactly solved in certain

scattering configurations [6]. These are the Brownian fractals generated by

simple random walks along a line. Both Brownian fractal phase and slope models

have been investigated in some detail [k6]. Relationships have been established

with telegraph wave phase screens, which are non-Gaussian [7], and thence with

certain mathematically related problems in statistical mechanics [8]. In fact

these exactly solvable models are members of a class of objects in which

increments of phase, slope etc are independent. By exploring such models, new

insight into the phenomenology of wave propagation may be obtained.

In this paper we present some further results on the statistical properties of

ray density fluctuations beyond a refractive layer. In the next section we

investigate the effect of spatial integration at the detector when the slope of

the scattering layer is fractal. In section 3 additional results on scattering

models with independent increments will be derived with a summary and

conclusions in the final section.

2. INTEGRAIBD RAY DENSITY FLUCTUATIONS

The density of rays beyond a diffusing layer which introduces wavefront

distortions of local slope m(x) is given by

m

R(y.z) = g fdx 6(m(z) — (1)
—oo

where z is the propagation distance and y is the lateral displacement coord-

inate of the detector. We have assumed for simplicity that the phase screen is

corrugated and infinite and note that <R> S 1. In what follows we shall adopt

a stationary multivariate Gaussian model for the statistics of m with a power

law structure function of the form

5(x) : <(m(0)-m(x))2> : lac/1:1" 0 < u < 2 (2)

where L is a length scale. It is not difficult to show from equation (1) that

the ray density autocorrelation function is given by

an I 2 _

_ 1 (1.2: (3+ )
<R(0)R(y)> - exp ;— (3)

where we have suppressed the x coordinate on the left hand side for brevity.

This formula can only be evaluated exactly for the model (2) when u = 1. In

this case it has been shown [6] that R is the square modulus of a complex

Gaussian-Markov process of decay length zz/L, for which the integrated

statistics are well known. Defining the integrated ray density by
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‘ y+W/2

E(y;L) = % / R(y') dy' ,. (A)

y—W/2

which corresponds to a slit detector of length W, we find the generating

function for the distribution of E is given by [9]

-1 .

9(3) : <exp(-5E)> = {exp y)[cosh n + % sink n] (S)

LW/zawhere y

2 I 2
and n = Y + 3Y3

Moments of the distribution can easily be obtained from this formula by
evaluating derivatives with respect to S at s = O. For example

<E2> : 1 + (2y)‘1 [2 — y_1 + 7—1 erp(—27)] (6).

The generating function for the joint distribution of integrated ray densities
is also known so that the effect of detector integration on correlation

properties can be calculated. The simplest result for the bivariate moment is
given for ly-y'l > W by [10]

sinh2 y
2

Y

<E(y)E(y’)> : 1 + exp(—2LIy—y’[/22) (7)

As V approaches 2 the integral on the right hand side of equation (3) diverges,
reflecting the onset of caustics or singularities in the ray density pattern in

this limit. We report an investigation of the nature of the divergence
elsewhere. An alternative approach is to set v = 2 before taking the short

wave limit and examine the divergence of the wave amplitude statistics with
wave vector [2]. We explore yet another avenue here by observing that the

smoothing provided by detector integration should ameliorate the effect of

singularities. In fact we find finite results and make contact with previous

work on smoothly varying scattering models only whena finite outer scale is

included in the model (2) in addition to detector integration. Instead of the

"hard" aperture (4) a Gaussian-profile "soft" aperture is employed for
mathematical simplicity and we calculate the simplest integrated statistic

2 1 2 I
<5: > : mfdy exp(—y Mil/2) (RM) R(y)> (8)
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where <R(0)R(y}> is given by (3) and

5(a) = dug/L2 lxl < z
(9)

= Lag/L2 lml > z

This leads to the exact result

2 22.252
<32) : 1 — arf(q) + £7 exp(—q) [Zn( >4» 1r erffiq) - F(q)] (10)

LZVZ

 

q

where F(q} --_' fexpkcg) erfc_(x) dz:

0

and q = L/z/Z

This formula bears a remarkable resemblance to an approximate expression

obtained previously from finite wavevector calculations of the second moment of

intensity fluctuations in waves scattered by s smoothly varying phase screen.

In fact, with finite wave vector (k), the second moment of intensity

fluctuations beyond a Gaussian phase screen with Gaussian correlation function

is [11]:

_ _2 (Micah: _ _
<I2> : 2(l-erfq) + $17 emp(—q ):Zn( 3 )+ werfi(q) - F(q) (11)

 

where a : Ez/Zzho/S, kho is the rms phase fluctuation, E the characteristic

correlation length and Y is the Euler constant. Equations (10)and (11) are

structurally identical except for the factor of 2 appearing before the first

term on the right hand side of equation (11). This factor is associated with

speckle or interference and we would not expect it to appear in expressions for

ray statistics. Comparison of the expansion of a Gaussian fiorrelation function

about the origin with model (9) shows that g = E and L2 s 5 /12h2 confirming

that the geometrical parameters q and a are the same. Inspection of the

logarithmic terms then reveals that, apart from constants, these are identical

if the detector size N is equivalent to the diffraction scale z/kE. Thus,

integration at the detector is playing the same role as diffraction smoothing

in these calculations-

3. SCREENS WITH INDEPENDEIT IRCREHEHTS

In this section we continue the theme of ray density fluctuations,

concentrating on the Brownian fractal slope model (2) with v u l. A

simplification of the analysis presented in previous work, which enables new

results to be derived, is achieved by taking advantage of the Markovian

factorisation of the joint slope distribution implicit in this model:

p(m1,m2,m3 ... ) = po(m1) p(m2~m1) p(m3—m2) - ... > (12)
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where m- : m(x-) with x. > x _1 and p0(m ) strictly speaking has infinite
width. Note that the distrigutions p an p0 are Gaussian. If equation (1) is
generalised to include a hard aperture centred at the origin

   

W/2

ivy) : edema-9)
-W/2

| then

M x-y x-y m y_‘i _1 _2 _N'(RN) - zit/“J‘de ..der(m1_ 2 ,m2_ z ...mN_ a) _(13)
_W/'- .

The region of integration can be divided into N! volumes giving equal contribu-
tions' where the (m-} are differently ordered. Using the factorisation property
(1%) we obtain, afler some manipulation,

 

Lw/zz 3”
ac
1 2_ z W 2261 y p(/(x1—x2)) p(/(ac2—z3))

<RN> - Zle dr1p0(Z-T—E>fdz2———f—— . . .

0 0
fizz-.762) 0 Wang-9:3)

p{/('x _ —x J)
. . f dz”#— (14)

, /(zN_1-ch)

where p{ac) = exp(-x2/2)//211 and poms) = exp(-:c2/2mi)//21rmi (15)

mi : g/ZL being the slope variance, limited only by the asymptotically large
outer scale 5- The convolution on the right hand side of (14) can be reduced

' with the help of Laplace transform theory to give the results

2
LW/z N_1(

_ z W_fl_ -1 )<n”> _ N13] clacpa(—2E L (16)
0
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LW/zz

— -5 l_§£_l '1 _1_ ‘
PM) ' MR) [1 Lf drpo(23 L z)Zx {pg(p}]

o

LW/22
i l_z_z_a —1 eEFR/EQZN
+Lf drpa(22 L z)[ac 2 (17)

pgfp)

c+ino

wherel:;1{f(p)} is the inverse Laplace transform I exp(px) f(p) dp and
c—Lm

g(p) = Z/V2p+1- The transform in equation (16) is an incomplete Y-function and
those in equation (17) can be expressed in terms of error functions. when
LW/z2 >> 1 the main contribution to the integrals in (17) comes from the region
where x is large and we recover the previous results [6] PfR) + exp(-R) and
(RN> + N!- However, the general results (16) and (17) allow other regimes to
be explored. In particular in the narrow beam limig LW/zg << L new simple
results for the distribution of ray density and moments can be obtained:

pm) : (1-28/~’11) 5m) + (We) erfc(R/2a) <13)

<3”; : Bu—zv); (mum (19)

<R> F

where a = /LW/2z2, B : /2W/L po(x/z), with pa given by equation (15). A
numerical evaluation of the normalised second moment on axis (y = 0) given by
equation (16) is plotted against o‘1 for various values of 8‘1 in figure 1-
This shows how the ray density fluctuations increase with distance from the
scatterer and eventually saturate as predicted by result (19)-

The foregoing analysis demonstrates the relative simplicity of the Brownian
fractal slope model. The new narrow beam results (18) and (19) are entirely
consistent with previous conjectures concerning the nature of the scattering in
this configuration: the incident beam of rays is steered and broadened by the
screen so that, as indicated by the delta-function term in equation (18), for
some fraction of the time no energy falls on the detector. The dependence of
the statistics on the single interval slope distribution p0 has often been
predicted from geometrical considerations and seems to be supported by experi—
mental evidence [12]. The detailed N-dependence of the moments has not been
predicted before, however, and warrants comparison with data on fluid
scattering systems generating highly non-Gaussian fluctuations.
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Figure 1: Second normalised moment of ray density fluctuations on axis plotted

as a function of scaled distance for various values of a scaled

aperture parameter.

5. SUMMARY AID CONCLUSIONS

We have investigated the effect of spatial integration on ray density fluctua-

tions beyond a diffuser with fractal slope and shown how this can be used to

examine the marginal case or smoothly varying limit when caustics are generated

in the ray density pattern. We have also explored more specificallythe

Brownian fractal slope model and shown that the equivalent assumption of

independent slope increments simplifies the analysis and allows new results to

be derived. It is likely that such an assumption for the phase increments

would also lead to some simplification in the analogous fractal phase

scattering problem but this requires further examination. Progression to

models where the phase is not a Gaussian process can be made through general-

isations of the kind of random walk construction for the scattering object that

we have adopted here [7].
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