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INTRODUCi‘ION

Interest in studies or wave propagation in random media has increased in
recent years in connection with their numerous applications in acousticsfi
biophysics, optics, radiophysice, atmospheric physics, etc [1,2]. The
problems associated with random media may be grouped into three main
categories: discrete random scatterers, random continua. and rough
surfaces [3.4). Scattering of the waves bythe inhomogeneities or the
medium or surface, causes stochastic changes in the amplitude and phase of
the waves, and. - in the case of transverse waves - of the direction of
polarization. A variety of mathematical methods have been employed in
studies or wave propagation in random media. The choice of the one which
is actually used depends to a large extent on the scale or the
inhomogeneities in relation to the wavelength of the radiation, and
whether multiple scattering needs to be considered at some stage in the
analys s.

The present paper reviews briefly the most common methods that are used,
namely the methods of. optical geometry, and small and smooth peturbations
(the last two are sometimes called the Born and Rytov approximations).
There are two distinct (but related) results for the analyses. One
concerns the average (square) fluctuations that may be observed in the'
amplitude or phase of the waves that are received, while the other
concerns the average loss of amplitude due to scattering by the
inhomogeneities. These two types of results are closely related to the
concepts or incoherent and coherent scattering that have been used by a
number of authors.

The results obtained by the methods given above are compared with those
obtained using two different methods - that of the parabolic equation and
that using Green's functions. Before summarising the established results,
some definitions need revision.

STATISTICAL PROPERTIES OF A RANDOM EDIA

The main quantity used in these discussions is the mean square fluctuation
in the acoustic refractive index, and its autocorrelatien. The square of
the refractive index is separated into the mean and fluctuating parts:

Uzi!) " 1 * HE) - (1)

and the autocorrelation of the fluctuations is given by

V (In!) ‘ “(EJNEP (1)
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where the brackets <> indicate an ensemble average. The most common forms
for the corelation function are

Gaussian : 115,5) = <¢’> exp — (r‘-rx)’/a’ (3a)

or exponential : urn!) = <¢'> exp - |5‘~gz|/a (3b)

where a is the radius or correlation. .

sometimes the separation of n is m = i+u, when e=2u tofirst order terms.

The correlation coefficient of the medium refractive index variations is
given by

= <u(£,) 14(5))

<u‘> .
N H)

SUMRY OF ESTABhISHED RESULTS

The method of optical geometgg (rag theory.
Th e is used when the mean 3 :e o! the nhomoqeneities, a, is much greater
than the wavelength and it iL<<a‘ where L is the observation distance
(which must thus be small compared to a). The mean square phase
fluctuations are given by: '

<(Aa)*> = .m <u1> k1 [3' (5a)

and mm» =- 2<ui> 1:" u . (so)

for Gaussian underponentiai refractive index correlation coefficients
respectively.

The method 0! smooth ‘ rturbations
Rytov's method requEres lees restricting conditions than the method of
small perturbations described in the next subsection in that it requires

- that the relative chanqu of amplitude and phase be small. only over the
scale or a wavelength. The scattered wave (for an incident plane wave) is
written in the form:

P " ME) exP 1 (‘wt ' 5(5))

where Mg and 5(r) incorporate the amplitude and phase fluctuations. A
new function Hg) "is defined such that

p = An exp i(ut - 7(5)) e (5)

where 7(5) = 5(5) = i MERE]
0
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Inserting the solution (6) into the wave equation, taking the first
approximation and using the restriction mentioned in the first sentence
one finds that the results depend on the parameter D a dL/ka‘.

For D<<l the results of the ray theory given in the previous section
(equations 5a and b) are recovered.

For D>>1 one obtains

ab = <[ln [if—q]: " <u‘>k‘L {HUN (7)
0 o

This gives, for Gaussian and exponential correlation functions
respectively:

(51) = Km <u3>k‘aL (33)

and (51> = <u=>klaL (ab)

The method of small rturbations
This Is limited to the case In which the relative changes in amplitude and
phase are small over the whole of the wave path. The starting point is
the wave equation in an inhomogeneous medium [5]:

v‘p -M 1'! = (Vlnp)Vp (9)
co‘ at‘

I! the wavelength is large compared to the mean scale of the
inhomogeneity, i.e. ke<<i, the scattering is isotropic (in an
isotropically random medium), while if ka>>i, most of the energy is
concentrated in the solid angle 8 ~ Uta)".

One obtains expressions for the mean intensity attenuation coefficient, a,
for Gaussian and exponential refractive index correlation functions
respectively:

(10a)
-22

7°11! <n'>k‘a[i-eka]

and 7 = —_5‘“I)k‘a' (10h)
(1+4k‘a‘)

Thus for xa<<i . 7 - k‘
and for ke>>l . 7 - k“.
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THE PARABOLIC EQUATION METHOD

The parabolic equation method is used if the wavelength is small in
comparison with a, La. ka>>l [6,7]. Equation (9) reduces, in the short
wavelength approximation [3), to:

v'p + k‘(l+u‘)p = o

for a monochromatic wave, where k = u/CD.

Assuming p = AD exp flu (or no and p = A(x,y,z) exp ikx for 300, we
obtain

an, an+ala+ain+ : +1 ,,E 2mm 5 a? k(2uu)A o (11)

Writing A = in + all where an is the fluctuating part c! the amplitude. and.
<A> = no exp - ax where u (=57) is the attenuation coefficient at the mean
(amplitude o! the) acoustic field, and provided u<<k, u1<<l and ka>>1,
equation (11) reduces to the parabolic equation:

2ik3A+fl+fl+zkhm=o (12)
3?: w: an:

chernov has shown that this is equivalent to taking into account only the
forward scattered Haves.

.
Equation (12) can be solved by successive approximations and. the first
approximation gives, forthe intensity attenuation coefficient of the mean
acoustic field: '

1 = 2<u‘>k’ I mm: (13)
O

For Gaussian land exponential correlation functions, this yields,
respectively

7 = m <u‘> k‘a ' (14a)

and 7 - z<u1> k‘a (14b)

THE GREENS FUNCHON HETHOD

Application of Green's functions in the analysis of acoustic wave
propagation in random media has made multiple scattering studies feasible
[9,10]. The Green's function «550) describing an acoustic field at a
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point 5, obeys the following integral equation:

«5.50) - cum.) - k‘fcotsls.) us.) GiEuEJ d's. us;
where 5,, is the position of the source, ((5) is defined by equation (1)
above, and 605,55) is the so-called free space Green's function:

5455.) " -W (16)

that obeys the equation

Wears.) * k‘ 645;.) = “5-59) (m
Solving equation (20$ by an iterative procedure and subsequently
averaging. one obtains for the mean acoustic lield the Dyson equation
[9-11]: '

<G(r.r.)>=G,(§.§,)+”G°(r.n)0(5.i5.)<G(r..§°)>d’t,d’r. (la)

When 0 is the nass operator (or ettective wave number operator) Which can
be expressed in series ton [9-11]. v

For tendon stationary and isotropic media. the Dyson equation cu: be
solved [10] to give:

+-
“(R

6(5) = ‘ I ———-5§;____________________ dx (19)
dn‘iR _. L L h. "x x {Lansmmrmio

 

The effective complex wave number at the mean acoustic field is given by
the poles of the integrand function [10]. Using the Bounet approximation
(11] that retains only the first ten of the series to: 0, Le.

em = k‘G.(t)v(r)

where v(r) is the correlation function for q (see equation (2')), one
obtains an expression to: the poles at the integrand of equation (19) as:

1-: k‘ - “‘2 ak K +R_L1(r)e sinutnd: o (20)

ProcJ.O.A. Vol 9 Fm: (1381]

 

197  



' Proceedings of The Institute of Acoustics

WAVE PROPAGATION IN RANDOM 112le

The enactive wave number of the mean acoustic field can be shown (10] to
be .

it“, = k[1+ "Lk rxlngggomam 1"? I2:(K)de] (21)
0

 

The imaginary part of this gives ‘the scattering less, so that the
attenuation coefficient of the mean acoustic field is:

2k .
7 = n‘x‘ Iomxax (22)

o

where MK) is the Fourier transfer: of 7(r).

Assuming a Gaussian form for 'r(r), one_.obtaine ,

1 - __'"“:>a‘" [he-ma] (21a)

.while for an exponential term, one obtains

7- , z<">k‘e‘ (21h)
1+gk’a' '

COMPARISON OF RESULTS
1

The results obtained by the different methods for the two different terms
of the correlation function given in equation (3) are shown in equations
(5) and (e) for the mean square fluctuations, and in equations (in), (it)

. and (23) for the mean intensity attenuation coefficient.

.the mean square phase fluctuation is equal to that of the mean square of

the logarithm a! the amplitude fluctuation using Rytov's analysis
(equation (3)). The dependence on the parameter D=dL|kaz is or interest
in that for D<<l, the results obtained are identical to those obtained by

the ray theory (equation (5)), while for D>>1. the values obtained have
the same dependencies, but hall the magnitude.

As far as the intensity attenuation coefficients are concerned, the

parabolic equation analysis (equation (14)) - as expected - gives the same

results as the method or small perturbations (equation (10)) for the snail

- wavelength limit (ka>>l). The expressions obtained for 7 by the Green's

function analysis (equation (2:))- are identical to those obtained by the
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small perturbation method, provided the Bourret approximation is made. The

Green's function method is clearly analytically complex, but has _the

significant advantage 0! providing a series solution to the problem so

that higher order (multiple) scattering can be analysed. It appears to be

a general rule that the attenuation predicted with a Gaussian correlation

function is less than that with a simple exponential function.

CALCULATION OF VElDCI’i‘Y DISPERSION-

Miller and his co-workers (12] have suggested a local form (or the Kramers

Kroni relations between the frequency dependence of the attenuation

coefl cienl: and the velocity dispersion (C(14)) as:

 

w. "a. .

_’~\= 1 -Z[ A"). du - (2")
c(v) C(Va) n "a V: I

Equation (26) can be written in an approximate form as:

v, V
:04) - qua) - 7'2"“ I “J? dw (25)

v H

 

0

Using the values of 1 obtained from the Green's function analysis‘ (file),

one observes that the dispersion will depend on the ratio an and also on
the torn o: the correlation coeflioient, ll, of’ the medium irregularities.
Por the small wavelength limit we have (ka>>l):

C'Wa)
C(V) - C(Vo) = B <u'>a (vi-yo)

 

I
co

and in the long wavelength limit (ka<<l):

cw) - C(Vo) = B “a”, (v'-v°')
3c ‘

a

 

where e - L tor a Gaussian correlation lunction in both wavelength

vn limits

ll

.
‘
l
l
n

tor an exponential correlation, Ira»).

(or an exponential correlation ka<<l

Experimental confirmation of these results is still awaited.
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