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INTRODUCTION

Interest in studies of wave propagation in random media has ‘increased In
recent years in connection with their numereus applications in acodstics
bicphysics, optics, radicphysics, atmospheric physics, ete f[1,2]. The
problens associated with random media may be grouped into three main
categories: discrete random scatterers, randem continua, and rough
surfaces [3,4). Scattering of the waves by the Inhomogeneities of the
medium or surface, causes stochastic changes in the amplituds and phase of
the waves, and - in the case of transverse waves - of the diraction of
polarization, A variety ¢f mathematical methods have been employed in
studies of wave propagation in random nedia. The cholce of the one which
is actually used depends to a large extent on the scale of the
inhomogeneities in relation to the wavelength of the radiation, and
whathei multiple scattering needs to be considered at some stage in the
analysis,

The present paper reviews briefly the most common pethods that are used,
namely the methods of optlcal gecmetry, and small and smooth peturbations
(the last two are sometimes called the Bern and Rytov approximations),
There are two distinct (but raelated} results for the analyses. One

concerns the average (square) fluctuations that aay be observed in the

amplitude or phase of the waves that are received, while the other
concerns the average loss of amplitude due to scattering by the
inhomogenelties. These two types of results are closely related to tha
concepts of inccherant and coherent scattering that have been used by a
nupber of authors.

The results cbtained by the methods given abeve are comparsd with those
obtained using two different methods - that of the parabolic equation and
that using Green's functieons. Before summarizing the established results,
sone definitions need revision.
STATISTICAL PROPERTIES OF A RANDOM MEDIA

The nain quantity used in these discussions is the mean square fluctuation
in the acoustic refractive index, and its autocorrelation. The square of
the refractive index is separated into the mean and fluctuating parts:

n*(r) = 1 + ¢(r) : (1)
and the autocorrelation of the fluctuations is given by

Y (E,Z) = <e(Ze(r)> {2)
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where the brackets <> indicate an ensemble average, The most common forms
" for the corelation function are

Gaussian : ¥(r,rj3 = <¢'> exp - (r,-r,)*/al (3a)
or ex;onent.ial t ?(r,r) = <ei>exp - |rr)/a (3b})
where a is the radius of correlation. )
Scmetimes the separation of n is n = 1+y, when e=2p to tirst order terms.

The correlation coefficiant of the medium refractive index variations is
given by
<u(£1) ﬂ{;;)>

<plr

N = {4

SUMMARY QF ES{I‘ABI.;ISHED RESULTS

The method of optical geometg% {ray theo%)
This 1s usad when the mean size of the inhomogeneities, a, 1s much greater

than the wavelength and if il<<a® where L is the observation distance
(wvhich must thus be small compared to a), The mean square rphase
fluctuations are given by:

<(ap)?> = ym <u?> k? Lla (5a}
and <(ag)?> = 2<u?> k¥ La . (5p)

for Gaussian and. exponential refractive index correlation coefficients
respactively.

The method of smocth perturbations

Rytov's method requires less restricting conditions than the method of
snall perturbations described in the next subsectien in that it requires
- that the relative changes of amplitude and phase be small only over the
scale of a wavalength., The scattered wave (for an incldent plane wave) is
written in the form:

p=A(r) exp i {ut - S(r))

where A{r) and S(r) incorporate the amplitude and phase fluctuations. A
new functlon ¥(r) 1s defined such that
P= Ao exp 1(wt ~ (1)) ; {6)

where ¥{r) = sS(r) =i ln[ii—_)
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Ingerting the solution (6} inte the wave equation, taking the first
approximation and using the restriction mentioned in the first sentence
one finds that the results depand on the parameter D = 4L/kal,

For D<<1 the results of the ray theory given in the previous secticn
{equations 3a and b) ara racovered.

For D>>1 one obtains

<gi> = <[1n [5;2]]13‘ = <gixkiL I:H(l)dl (7}

]

This glves, for Gaussian and exponential correlation functions
respectively:

<8> = ¥yn <y?>kal (8a)
and <8%> = <yi>kial - (8k)
The method of small perturbations
This is lim{ted to the case In which the relative changes in amplitude and

phase are small over the whole of the wave path. The starting point is
the wave equation in an inhomogeneous medium (5]:

vip - (1 * u}? 3P < (¢1npyup (93
Cot ot?

If the wavelength 1s large compared to the mean scale of the
inhomogeneity, i.e. ka<<i, the scattering 1s isotropic {iIn an
isotropically random medium), while if ka>>1, most of the energy is
concentrated in the solid angle 8 ~ (ka}™*.

One cbtaing expressions for the mean intensity attenuatlion ccefficient, a,
for Gaussian and exponential refractive index correlation functions
respactively:

<kia?

¥ yn <g:>klﬂ[1 -8 a ] (10a)

and y = 8<uP>k‘al : {10b)
{1+4k?a?)

Thus for ka<<l , ¥ - k*
and for ke>»l , ¥y -~ k2,
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THE PARABOLIC EQUATION METHCD
The parabolic equation method is used i1f the wavelength is small in
comparison with a, {.e. ka>>1 [§,7). Equation (9) reduces, in the short
wavelength approxinmation [8}, to: :
vip + ki*(1+uM)p = 0
for a monochromatic wave, where k = w/C,.

Assuming p = A, exp lkx for x<0 and p = A(X,y,z} exp lkx for x>0, we
obtain

a!A.',zik 3h+8‘a+alh+ H gyl =
Writing A = A, + aA vhere aA is the Fluctuating part of the amplitude, and
<A> = A, e¥p - ox where a (=¥y) 1s the attenmuation coefficient of the mean

(ampplitude of the) acoustic field, and provided a<<k, u*<<l and ka>>1,
equation (11) reduces to the parabolic equation:

21k g% + 28, 3Ry xtypmg {12}
ayl agl -

Chernow has shown that this is equivalent to taking into account only the
forward scattered waves.

-
Equation (12) can be solved by successive approximations and the first

approxination gives, for the intensity attenuation coefficient of the mean
acoustic field: ) :

7 = 2eutkt | W(e)ag (13)
a

Por Gaussian and exponential correlaticr functions, this yields,
respectively

¥y = ym <ut> kla ’ {l4a)
and y = 2¢u3> k%a {14b)
THE GREEN'S FUNCTION METHCD
Application of Green's functions in the analysis of acoustic wave

propagation in randonm media has pade multiple scattering studies feasikle
[5,10]. The Green's function G(r,r,) describing an acoustic field :t a
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point r, obeys the following integral equation:
Sl = GolnEy) - K[GnEY o) GE g @'r  (19)

where r, is the position of the source, «(r} is defined by equation (1)
above, and G (L,L;) is the so-called free space Green's function:

GolEEg) = - %ﬁ- | (16)
that obeys the equation

VIGa(Lize) * K Go{E.Ig) = S{E-Eo) (17)
Solving equation (2bj by an itarative procedure 'and subsequently

averaging, one obtalns for the mean acoustic field the Dyson equaticn
(9-11]: i

(e Eg Gy £, Ea [ JOatr 2R T BT AT, (10)

whera Q is the pass oparatér (or affective wave nﬁnber operator) which can
be expressed in s?rles form [9-11]. ’ . :

For random stationary and isotropic media, the Dyson equaticn cazn be
solved (10) to give: - -

4o
1R
o) = 3 e ‘ aK (19)

1 - -
R | e g] ¢lr)sin(Kr)rdr+io
-]

The effective coaplex vave number of the 'mean acoustic field {s glven by
the poles of the integrand function [10]. Using the Bourret approximation
(11] that retains only the first term of the series for @, i.e.

Q(r) = k'c {r)¥(r)
where ¥(r) 1s tha correlation function for ¢ (ses equation (3)), ocne
obtains an expression for the poles of the integrand of equation (19) as:

ki-x! 4 ;f [ T(r)eikralntxr)d: =0 (20)
Q
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The effective wave number of the mean acoustic fileld can ke shown [10] to
be .

kg = k[1+ k I:mn[%’:_:g].o(x;dm 1"_;" [::(x)xdx] (21)

The I{wmaginary part of this gives Athe scattering loss, so that the
attenuation coefficient of the mean acoustic field is:

%
v = nik! l $(K)RdK 7 (22)
o

" whare &(K) is tha Fouriar tramsform of ¥(r).

Assuming a Gaussian form for ¥(r}, one.obtains
y = ya<eidakt [1-5"““2] : : (23a)
4

.while for an exponential form, one obtalns

.’: = 2€e*>k'a? {23b)
1+4xta? '

COMPARISON OF RESULTS

1
The results obtajned by the different methods for the two different forms
of the correlatlon function given in equation (3) are shown in equations
(5) and (8) for the mean square fluctuations, and in equations {10), (14)
. and {23) for the mean intensity attenuation coefficlent,

The mean square phase fluctuation 1s equal to that of the mean square of
the logarithm of the amplitude fluctuation using Rytov's analysis
(equation (B)}. The dependenca on the parameter D=iL|ka® is of lnterest
in that for D<<l, the results obtained are identical to thoss obtalned by
the ray theory {equation (%)), while for D>>1, the values obtained have
the sane dependancles, but half the magnitude,

As far as the intensity attenuation coefficients are concernsd, the
parzbolic equation analysis (equation (14}) - as expacted - gives the same
results as the method of small perturbatians {equatlon (10}) for the small
. wavelength limit (ka»>>1), The expressions obtalned for y by the Green's
function analysls {equation (23)) are 1dentical to thosa cbtained by the

N
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small perturbation method, provided the Bourret approximation is made. The
Graen's function methad is clearly analytlcally complex, but has the
significant advantage of providing a series solution to the problem so
that higher ordar (multiple) scattering can be analysed, It appears to be
a general rule that tha attenuation predicted with a Gaussian correlatio
function is less than that with a simple exponential function, :

CALCULATION OF VELOCITY DISPERSION.

Miller and his co-workers {12) have suggested a local form for the Kramers
Kronlg relatlons between the frequency dependence of the attenuation
coefficient and the velocity dispersion (c(w)) as:

W

LY S -.2.]'_(_).“"' dw : (24)
W (W) Ay _

Equation (24) can be written in an azpproximate form as:

w , :
: .
c{w) = c(w,) = ffiile I Ei;l dw (25)
v
-]

Using the values of y obtalned from the Green's function analysis’ (y=2ej,
_ona obsarves that the dispersien will depend on the ratlo a:x and also on
the form of the corralation coefficient, N, of the médium irregqularitles,
For the spall wavelength limit we hava (ka>>1): ‘

ct{vy)
2

c

c(w) = c(w,} = B <u'>a (W=W,)

- e
and in the long wavelength limit (ka<<1}:

c{w) - c(¥,) = B sut>al (w'-w,)
3c,!

where B = 1. for a Gausslan correlation function in both wavalength
va limits

o
nlw

for an exponentlal correlation, ka>>1

for an exponsntial correlation ka<<l

Experimental confirmation of thess results is still awalted,
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