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INTRODUCTION

Wave propagation in random media is encountered in a large variety of the
branches of physics: acoustics, biophysics, optics, radiophysics, atmospheric
physics, etc. The problems associated with random media may be grouped into
three main categories: discrete random scatterers, random continua, and rough
surfaces [1,2]. Scattering of waves by the inhomogeneities of the medium or
surface causes stochastic changes in the amplitude and phase of the waves, and
- in the case of transverse waves - of the direction of polarization. A
variety of mathematical methods have been employed in studies of wave
propagation in random media [3-7]. The choice of the one which is actually
used in a given situation, depends to a large extent on the scale of the
inhomogeneities in relation to the wavelength, x, of the radiation.

If x<<a and xL<<a2 (where L denotes the distance traversed by the wave and a
is the mean size of the inhomogeneities), the methods of optical geometry can
be used to calculate the mean square fluctuations of the time taken for a wave
to reach a particular (distant) point, and also the fluctuations of phase and
amplitude observed at that point.

The range of applicability of the method of small perturbations is determined

by the inequalities: £3 « 1 , A¢<i , where A denotes the amplitude of a wave,

0

and Ad its phase fluctuations [7]. The method of smooth perturbations
(Rytov's method [7]) has a somewhat wider range of applicability as it demands
only small relative changes of amplitude and phase over the distance of a
wavelength. These two conditions are fulfilled if the energy scattered during
a wavelength of propagation distance is small in comparison to the initial
energy of the wave.

The methods of small pertubations and of smooth perturbations have been
considered in detail by Chivers [8], who has generalised Rytov's method by
calculations of wave phase and amplitude fluctuations caused not only by
variations in wave velocity but also in the density and the bulk modulus of
the medium. The results obtained depend on the value of the parameter

D = %%2 where k is the wave number, and the other notations have already been

defined above.

AUTOCORRELATION FUNCTION OF FLUCTUATIONS IN THE MEDIUM REFRACTIVE INDEX FOR
ACOUSTIC WAVES

The acoustical properties of random media depend not only on the value of the
mean square fluctuations of the refractive index for acoustic waves, but also
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fluctuating parts of the square of the acoustic refractive index, we separate
as follows: 111 = 1 + e(f) The autocorrelation function of the fluctuations

_e(?) is defined by the formula:

“’(3‘Ifz) = “(EJEWZP ' (1)

In theoretical considerations concerning acoustic wave propagation in random
media, the Gaussian form of the correlation function is often used:

(2,2,): '
wi‘UrZ) = <ev2>e' T (2)

where <e‘> denotes the mean square fluctuation of 6, while a is the so-called
radius_of correlation, i.e. the mean distance over which fluctuations are
correlated. The Gaussian form of the correlation function corresponds to
continuous changes in the medium refractive index for acoustic waves. If
changes of the medium refractive index are discontinuous, the correlation
function of the medium inhomogeneities has an exponential form:

“3132) = “5°- ?‘fz " ' (3)

as in this case [7] :

<[de r)]f> = 21in Ygo)-V§r) = 2<52>lim _1 = 00.
ai- ' r~o r rao r;

One can prove [9] that for media near their critical state, the correlation
function of fluctuations in the molecular concentration is given by the
Ornstein-Zernike formula:

Y(r) = g e? ' (4)

where A = kBTBT - kB denotes the Boltzmann constant, and
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If inhomogeneities are caused by turbulences, correlation between medium
inhomogeneities are described by the von Karman function [3,5]:

m = E1“ REL ' <5)
where Kv[§] is the Bessel function of imaginary argument, the so-called

McDonald function [10], r(v) denotes the Euler gamma function, and v is a
number.

If the medium is statistically inhomogeneous, <e’> and v(?l,fz) change with
translation of the coordinate system. It is then preferable to use the
so-called structural function instead of the correlation function. The
structural function is defined by the equation:

D(i'1,i'z)= <[e(31)-e(fz)]z> (s)

The structural function is weakly influenced by fluctuations of great spatial
extent, while the influence of these fluctuations on the correlation function
is strong. Furthermore fluctuations of great spatial extent are difficult to
distinguish fromsmall changes resulting from the statistical inhomogeneity of
the medium [7].

GREEN FUNCTION METHOD IN STUDIES OF ACOUSTIC WAVE PROPAGATION IN RANDOM MEDIA

Application of Green's functions in investigation of acoustic wave
propagation in random media has made possible studies of the multiple
scattering of waves [5,6]. Let the positions of a source and a receiver of
waves be fixed by the vectors in and f respectively. The Green function
G(f,fo) describes the acoustic field at the point ?. G(¥,f°) obeys the
following equation [5,11]:

AG(P,f°) + k‘(1+e(?)G(f,f°)=s(?—fn) (7)

where k denotes the wave number, A is the Laplacian operator, and 8(f-E ) the
Dirac Distribution. The differential equation (7) can be written in integral
equation form:

G(i',i’°) = (mini-D)-k1J'<;O(i-',i',)e(snow,,i‘oyv'f1 , (a)

where G°(?,fo) is the so called free space Green function, that obeys the
equation:

AG°(i’,i"°)+k’G°(i",i‘°)=s(f-i’°) (9)
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and is given by:

eik| f-i'°|
Curio) = - Wol— , (10)

Solving eq. (8) by means of an iterative procedure, one obtains the following
series: ' '

c(s,so)=so(r,s1)-k=[so(r,2,)e(madman?x +

(11)

+ (-k’)zIIG°(f,?1)e(i")Go(i’l,i‘z)e(i’z)G°(i'l,i‘°)d'fid’i‘z +

from which, after averaging and introducing the so-called mass operator (the
effective wave number operator) in the form:

otf*.f‘*)=k‘Ga(f*,f‘*)w(f*,?‘*)

+k‘IIG°(f‘,E‘)G° (2,,22)G°(fz,f“)v(f‘,fz)?(?1,f*‘)d’fxd’fz +

(12)

+k°IIG°(f‘,ft)Go(ft,fz)Go(fz,f“)W(E‘,?“)?(fi,fz)d’i1d3f2+...

one obtains the Dyson integral equation:

<G(?:f°)>=Go(f:f°)+JIG°(E,?1)Q(f,,P2)<G(fz,fo)>d’f1d’fz. (13)

The Dyson integral equation can be solved effectively for random homogeneous
media (i.e. those for which the statistical characteristics <e2> and Y(?1,f2)
do not change with translation of the coordinate system).

For random homogeneous media, 6 and Q are functions only of differences of the
coordinates:

«(r-2°)>=co(:-ro)+”c°(E-ri mfg-f, )<G(?z-i’°)>d’i‘td’fz. (14)

4
Proc.l.0.A. ya 5 Pan 5 (1986) 2 3

 



 

Proceedings of The Institute of Acoustics

SCATTERING OF ACOUSTIC WAVES BY TURBULENCE

introducing the Fourier transforms of Go, <G> and Q:

ifi(f—fc)G°(?-Eo)=Ig°(R)e d‘R ,

1K ( f-i‘o)
<th-fo)>=i<q(fii>e difi . (15)

12(z-ro)dSR0(31-?2)=IQ(R)6

one obtains from (14) :

<9(R)>=g°(R)+(2n)‘qO(R)q(R)<q(R)> ‘1‘)

where:

1
g°(K = (2n) ( -x +10) '

as results from the equation:

mod-1’0 )+k‘G°(i’-i’° Fur-Po).

io denotes an infinitesimal small imaginary number, representing absorption of
the waves bythe medium. Applying inverse Fourier transforms, one obtains
from equation (16) :

<6 3-? >= 1 emf-f“ a" 17( °) —(2n)'JP_‘T-x-W)exp(1K) +10 K' ( )

Confining ourselves to random isotropic media and introducing the spherical
coordinate system, after integrating angles, the formula (17) takes the form:

on

1KR
<G(R)>= +1 Ke—__ dx _ (15)

4" 1R J kz-xz-%E £”Q(r)sin(xr)rdr+io

The poles of the integrand function determine the effective complex wave
number of the mean acoustic field [6].
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The further development requires an explicit form for the mass operator. In
the so called Bourret [2] approximation:

Q(r)=k‘G°(r)v(r) (19)

the following equation determines the poles of the integrand function in
formula (18):

kz-K2+]]:_‘ [V(r)eixrsin(xr)dr=0 . (20)

0

In the zero order approximation K=k, so the next first order approximation is
given by the equation:

khan:a ‘Y(r)eikrsin(kr)dr=0 . (21)

0

Using the formula:

[1+k [W(r)eikrsin(kr)dr]” 5 1+; [V(r)eikrsin(kr)dr ,

O 0

one obtains the following expression for the effective wave number of the mean
acoustic field:

xt=kef=k[1+% Jein(2kr)¥(r)dr+i§ Jsin'(kr)?(r)dr] . (22)

0 0

It is convenient to introduce spectral decomposition of the correlation
function V(r) :

W(r)=J“o(K)ein’K ,

or in the spherical coordinate system:
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VHF? Jo(k)sin(kr)kdk (23)

0

The equation (22), after some calculatifins, takes the form:
a .2 -

. 2k
= +n_k 2k+x]z¢(x)dx + 1" om)de . (24)ket k [1 4 [x 1n[m 2

o O

The scattering coefficient of the intensity of the mean acoustic field is
given by the formula:

2k

7=2Im(ke,)=n2sz¢(x)xdx , (25)

0

where: ¢(K)=(2n)'°“[‘t(f)e-mfdsi’ .

_4-p

or in the spherical coordinate system:

4>(k)= fiéx J5in(kr)v(r)rdr. . (26)

0

PHYSICAL INTERPRETATION OF THE APPROXIMATION USED

The consideration of acoustic wave propagation in random media by means of the
Green's function method can be given a visual interpretation using Feynman
diagrams. The Feynman representations are as follows:

—— denotes <G>

denotes Go 0 denotes Q

- denotes k2

 

---- -- denotes Y(r)
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The Dyson (13) equation has the following representation:

 

or:

r"~\ '-‘I l’—‘|
— = + —¢——o— + —‘—o——-—o—o— 1-

+ ."I’I"\ + f'\ ."\ K \ *

The following schemes of scattering correspond to the particular diagrams:

one can prove that the use of the Bourret approximation Q(r)=k‘G°(r)'¥(r) is
permissible if k2§2<ez><<1 [5), corresponding to fine grained random media.

CALCULATION OF THE SCATTERING COEFFICIENT FOR TURBULENT RANDOM MEDIA

For turbulent random media, the correlation function ‘I' is described by the
Von Karman formula (5). Its Fourier transform, calculated by means of the
formula (26), is:

r(v+; (52);:

W":m were

Inserting this into equation (25) the value of the intensity scattering

7 -

coefficient, 7, can be calculated. Figure 1 shows plots of W as afunction

7of k: for various values of the parameter v. It can be seen that W

increases monotonically with increasing 1:: and increasing v.
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Figure 1 : variation of the normalised intensity scattering coefficient with
k: and the parameter v.
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