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This work intends to investigate the effect of the rotor asymmetry on the critical behaviour of a 

non-ideal system. The analytic equations of motion are derived and then a parameter study is 

performed with variation of the rotor asymmetry, the external and internal damping and the motor 

voltage. Results show that the critical behaviour can be categorized into four classes from the 

viewpoints of the whirling stability and passage through resonance. A slight asymmetry has a 

positive effect on the passage through resonance but a large asymmetry has the opposite effect. 

Also, the analytic results are in a good agreement with numerical simulation unless the rotor 

asymmetry is large.    
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1. Introduction 

It is well known that the whirling motion of non-ideal systems is strongly affected by the dynamics 

of a power unit [1]. Many works have been performed for investigating the dynamic characteristics 

including the whirling stability [2], critical behaviour around resonance [3, 4] and so-called Sommer-

feld phenomena [5, 6].  

In this work, a non-ideal system with an asymmetric rotor is considered and an analytic and nu-

merical approaches are employed to investigate the effect of asymmetry on the stability and critical 

behaviour through resonance. 

2. Analytic formulation 

2.1 Equations of motion for a non-ideal asymmetric system  

As shown in Fig. 1, the non-ideal system in this work consists of a massless asymmetric shaft, a 

rotor with mass eccentricity and a DC motor. The equations of motion for the shaft whirling can be 

derived with respect to the rotating rr coordinate system as 

 

     cos2)1(2)1(2 2

E
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

   (1) 

 

     sin2)1(2)1(2 2

E

2

IE
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Above,  and  are non-dimensionalized by the radius of eccentricity and all the differentiations are 

taken for a dimensionless time t0 . Also, all the parameters are dimensionless such that 
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(a)  Schematic                                           (b)  Mass-eccentric rotor  

Figure 1: A non-ideal system with the shaft asymmetry. 
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For the non-ideal system, the motor speed is affected by the whirling motion of the shaft as well as 

the motor torque. Or, 

 

   



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)1()1(
J

V
m

I
bm        (4) 

 

All the parameters in Eq. (4) are also dimensionless, where mJ  is the motor’s mass moment of inertia, 

m is the motor damping, b is the motor’s back-emf constant and V is the motor voltage.  As shown 

in the right hand side of Eq. (4), the excitation torque on the motor is generated by two sources: the 

first is from the motor and the second is from the non-conservative circulatory forces due to the 

rotating internal damping of the shaft.  

2.2 Sommerfeld phenomena 

In case of stable whirling, the power supplied by the motor should be balanced by the power dis-

sipated by mechanical circulatory motion along the whirling orbit.  From Eq. (4), the supplied power 

can be expressed in a non-dimensional form as 

   

  bS VP              (5) 

 

On the other hand, the power is dissipated through the external and internal damping of the shaft and 

the motor damping. Or, 

 

  2
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In Eq. (6), SA  is the steady-state amplitude of whirling and  is the phase angle of the steady-state 

response from the  axis. By imposing the power balance between PS and PD, the following condition 

is derived: 

 

    )(VJ)2cos1(A4 bmmIE

2

S
        (7) 

 

Meanwhile, the shaft response can also be obtained by solving Eqs. (1) and (2). Since  and  are 

both constant at steady-state, the whirling amplitude SA  is given as 
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Solving Eqs. (7) and (8) simultaneously, SA  can be obtained as a function of V. When multiple 

solutions for SA exist for a single value of V, the Sommerfeld phenomena occur and a sudden change 

in the motor speed and the whirling amplitude is observed.  

2.3 Whirling stability 

For the system governed by Eqs. (1) and (2), the whirling stability can be determined by the char-

acteristic equation as follows. By assuming that sti

0
0e)t(


   and sti

0
0e)t(


 , the characteristic 

equation is derived as 
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A positive real part of roots, which is given in terms of the rotation speed and the external and 

internal damping, means that the system is unstable. Since the Sommerfeld phenomena cause an ab-

rupt change in the rotation speed, they are closely related to the whirling stability. Thus, the charac-

teristics of the Sommerfeld phenomena should be investigated with consideration for the whirling 

stability. 

3. Sommerfeld phenomena in a non-ideal asymmetric system  

3.1 Overview 

In this work, a parametric study is performed to estimate the fundamental characteristics of the 

Sommerfeld phenomena for the system in Fig. 1. The parameters includes the shaft asymmetry , the 

motor power V, the shaft damping E and I. The parameter  is not independently considered but 

related to  under the assumption that the shaft is uniform.  

 

10where,
11 2





       (10) 

 

Analytic results are first obtained from the power balance in Eqs. (7) and (8) and then numerically 

validated by integrating Eqs. (1) through (3). Table 1 shows a summary of system constants.   

 

Table 1: System constants  

Description 
(symbol) 

Constants 
(unit) 

Description 
(symbol) 

Constants 
 

Rotor mass (m) 1 (kg) Motor inertia (Jm) 500 

Rotor stiffness (k) 2.25 x 104 (N/m) Motor damping (m) 1.33x10-4  

Mass eccentricity (e) 2 x 10-3 (m) Motor back-emf (b) 3 x 10-3 

      

3.2 Fundamental characteristics of the Sommerfeld phenomena  

Figures 2 and 3 show results about the motor speed and the whirling amplitude for =0.1 and 0.3, 

respectively, while E=0.2 and I=0.1. In both cases, jump-ups in the motor speed are observed and  
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(a) Jump-up/down vs. power                      (b)  Motor speed                           (c)  Whirling amplitude  

Figure 2: Sommerfeld phenomena (=0.1). 

 

 

(a) Jump-up/down vs. power                      (b)  Motor speed                           (c)  Whirling amplitude           

Figure 3: Sommerfeld phenomena (=0.3). 

 

      

(a) Motor power                                                (b)  Motor speed 

Figure 4: Effects of asymmetry on the Sommerfeld phenomena at the jump-up. 

 

the system remains stable after jump-ups. As  increases, however, the Sommerfeld phenomena be-

come complicated such that a two-stage jump-up may occur.  

Figure 4 demonstrates a combined effect of the asymmetry and the damping on the motor and shaft 

behavior at the jump-up. When  < c, the shaft asymmetry helps jump up through resonance with a 

less motor power regardless of the damping. On the other hand, the asymmetry has the opposite effect 

in case that  < c.  

The external damping has a positive effect on jumping regardless of the asymmetry, but the inter-

nal damping has a negative effect. Also, the motor power at the jump-up is more significantly influ-

enced by the external damping than the internal damping. 
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3.3 Numerical validation 

In order to verify the analytic results based on the steady-state power balance, Eqs. (1), (2) and (3) 

are numerically integrated and transient responses during the jump-up are obtained. Figure 5 shows 

the analytic and numerical results of the motor power versus the shaft asymmetry. In case that  is 

small, the analytical results well match the numerical. For a large value of , however, the difference 

between the analytic and numerical results also increases. As  increases, the possibility of the un-

stable whirling becomes higher, which means that steady-state conditions cannot be achieved and the 

analytic results may not be accurate. Figure 6 illustrates a stability diagram with variation of the shaft 

asymmetry and the internal damping. Two types of instability exist: the first is the primary resonance 

and the second is the supercritical instability.  The shaft asymmetry has a more significant effect on 

the instability around primary resonance.      

4. Critical behaviour through resonance 

4.1 Stability diagram 

The critical behaviour of a non-ideal system can be classified from the viewpoint of the Sommer-

feld phenomena and the whirling stability. Table 2 shows a brief summary of the classification.  

In Class I, the motor power is not sufficient to jump up out of resonance and the system remains 

stable in a subcritical region. In Class II, the system becomes unstable due to the primary resonance. 

Both the shaft whirling and the motor speed fluctuates with a large amplitude. In Class III, the system 

jumps up through resonance to a supercritical condition and the motor speed remains below the sta-

bility limit, which can be approximated as )/(1 IE  . In Class IV, the motor speed exceeds the 

stability boundary in the supercritical region and a large fluctuation in the whirling amplitude is 

caused. 

Figure 7 shows stability diagrams between the shaft asymmetry and the motor power with variation 

of the internal damping. As the shaft asymmetry increases, the Class II region expands rapidly re-

gardless of the motor power and the internal damping. Also, the Class IV region grows as the internal 

damping increases.      

 

               

           Figure 5: Comparison of the jump-up voltage.                     Figure 6: Stability vs. motor speed. 
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a I=0.0                                      (b) I=0.01                                              (c) I=0.1  

Figure 7: Diagrams of the critical behaviour with respect to the asymmetry and power (E=0.1). 

 

 

(a) Motor speed                          (b)  Whirling amplitude                         (c)  Power balance  

Figure 8: Critical behaviour through resonance (E=0.1; I=0.1; V=5.5). 

 

4.2 Effects of system parameters on the critical behaviour 

Numerical simulation are performed to obtain the transient results of the motor speed, the whirling 

amplitude and the power balance. Figure 8 displays the typical characteristics of Class III near a 

stability boundary with  equal to 0.1. A stable jump-up in the motor speed occurs and the whirling 

reaches a steady-state condition with a perfect balance between the supplied and dissipated power.  

If  increases within the Class III region, there is slight variation in the whirling but the jump-up 

occurs more smoothly as shown in the case =0.2 of Fig. 9(a). As  further increases to enter the 

Class II region, the system becomes unstable and both the motor speed and the shaft whirling expe-

rience the large amplitude motion as in the case =0.3 of Figs. 9(a) and (b).  

Also, the motor power has a significant effect on the critical behavior as shown in Fig. 10. As V 

increases, the system demonstrates various characteristics from the stable subcritical motion of Class 

I to the unstable supercritical motion of Class IV. When V=10, a smooth coast-up is observed in the 

motor speed without the Sommerfeld phenomena. If V further increases to 16, the system experiences 

the supercritical instability of Class IV. A large variation in the dissipated power is observed as shown 

in Fig. 10(b).  

Although the whirling is unstable in both Class II and Class IV, the transient whirling responses 

are different from each other as shown in Fig. 11. Also, the motor speed in Class II varies with a large 

amplitude as in Fig. 9(a) but it reaches a steady-state after jump-up in Class IV.       

5. Conclusions 

The critical behaviour of a non-ideal asymmetric rotor is investigated by an analytic approach 

based on the equations of motion and the parameter study with variation of the rotor asymmetry, the 

motor power and the external and internal damping. Results show that the critical behaviour can be  
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(a) Motor speed 

 

 

(b) Power balance 

Figure 9: Effect of the asymmetry on the critical behaviour (E=0.1; I=0.1; V=5.5). 

 

 

 

(a) Motor speed 

 

 

(b) Power balance 

Figure 10: Effect of the motor power on the critical behaviour (E=0.1; I=0.1; =0.1). 
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(a) Primary resonance                      (b)  Rotating  internal damping 

Figure 11: Unstable whirling. 

 

categorized into four classes from the viewpoints of the whirling stability and passage through reso-

nance. A slight asymmetry has a positive effect on the passage through resonance but a large asym-

metry has the opposite effect. The external damping helps jump up through resonance regardless of 

the asymmetry. Furthermore, the external damping has a more significant effects on the motor power 

at the jump-up than the internal damping.  

Also, the analytic results are in a good agreement with numerical simulation unless the rotor asym-

metry is large.    
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