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1 INTRODUCTION

The use of fibre reinforced materials is becoming more common as they can be used to form strong lightweight
structures. There is therefore a requirement to understand their acoustic properties. The theoretical methods
outlined in this paper have been developed at lmperial College and at DRA Haslar to provide a basis for
computer programs to predict numerically the acoustic scattering by, or radiation {rom, certain relevant
canonica} problems. Parametric studies using such programs should help to identily the physical mechanisms
controlling the acoustic properties of these materials. Previous work al DRA has developed theoretical
methods and compuler programs for analyzing a variety of problems in which each component is isotropic.
The aim of the current work was to exiend these models so that they can include anisotropic components.
The four models discussed in this paper are planar layered media [1], cylindrically layered media [2], a rib
stiffened cylindrical shell [3] and a finite axisymnetric body [4]. The previous work makes use of the method
of ‘dynamic stiffness coupling in the spectral domain’ Lo assemble elements of aconstic fluid, viscous fluid
and isotropic elastic solids into a global systemi matrix equation, from which it is straightlorward to obtain
acoustic properties. This method will be used herc also. ‘Thus for planar layers in the z — y plane, see Figure 1,
spectral quantities are obtained by Fourier transformation with respect to £ and y, ¢.g. for the displacement

Ty, 3, 2) ny (2, y,2) S
uy(a, 3, z) / / wy(z,y,2) | e7 e dady (1.1)
u (e, f,2) u.(x,y, 2)

with the inverse

uz(zT,y, 2) 1 o ped Tplo. 8, 2) .
uylz,y,z) | = ﬁ/ / y(o, 3, 2) e e dady (1.2)
wa(2,y, 2) o u, (o, 3, 2)

whilst in cylindrical (r, ¢, z) geometry, see Figure 2, it is natural to make use of Fourier transforts with
respect to z and Fourier series with respect to ¢:

T (r,n,a) uz(r i\ . .
Tplr,na) | = =3 / ] u¢ r, ¢,-) e eI 2| g {(1.3)
- (r,n, o) T u(r, ¢,z)
whose inverse is
u.(r ¢, z) o0 T (r,n,«)

ug(r, ¢, z) | = % Z "‘¢] ug(r, n, o) 6 ey (1.4)

up(r, ¢, z) ® N\ Tprn,a)
In these and all subsequent equations the time-harmonic factor exp(—iwt) is omitted.

For the linear theories uscd in acoustics the surface speciral stresses at the layer boundaries can be linearly
related to the displacements in each of the three coordinate directions there. Hence for the mth layer

S[m}lu[m) —_ o"—_(m) (15)

where, see Figure 3, in the planar geometry

*The work described in this paper has been undertaken for DRA and has been carried out by
E. A. Skelton at Imperial College and by J. H. James at DIRA, Haslar, Gosport, Hants PO12 2AG.
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ul™ = @ (w, B), 8™ e, ), B (o, B), T ), T a, B), B, ) (16)
& = @, 8).75 (0, £), 7 (e 8), 7 (0, ), T N, ), T BT

and for cylinders _
ulm™ = (Tigm)(u,a),ﬁ&m)(n,a),'v‘if-m)(n,cr),ﬁ(;'"“'(n,r.r},Hg""H)(n,a),ﬁ(,”"“)[n’u)):r'! 0
&{mj = (E{-TJ(‘H,O‘),Ef_’;”(ﬂlQ'),Ef.?‘)(n‘u)lﬁi.gi-l-u(n‘{_g)lEf,';+l)(n|Q‘),E‘r:h"”(n’u])v" |

For a system consisting of N layers these matrices can be assembloed into a (3N +3) x (3N +3) system matrix,

by eliminating the surface stresses, as
Su=E (1.8)

in which u = ((ﬁ“))T,(ﬁ{z’)T....,(ﬁ(N“))T)T, E is the externally applied stress veclor and the banded
matrix S is '

(-S‘=+Si s} \
-8; -8}+8] 8
-8; -S8i+s87 83

-8; -S}4st st

_S:.:v_:_u _Sivwa_i_s.\'—:a S;\I-—z
*S_iv_"’ —Sf‘2+s£" s
-8, ~8f-'ysM 8N
\ ~sk Spysy)

in which the individual matrices ${™} have heen partitioned into the 4 (3 x 3) submatrices 87, 82 ST and
81, and 5° is a 3 x 3 matrix representing cither the upper hall-space or the exterior fuid, and §* is a 3 x 3
matrix representing either the lower half-space or the interior fluid, delails of which may he found elsewliere.

The vector E is the matrix of the applied spectral excitations. For » mechanical point force excitation applied
to a layer boundary at (xg, ¥, 20) or, in cylindrical polar coordinates, (rg, o, z0),

F =Foé(z — 20)8(y — ) = Fob(z — 2)6(¢p ~ do)/ry (1.9)
the spectral representations of which are easily obtained from the Lransform definitions as
F(a, 8) = Fyexp(—iaz, — idy) {1.10)

for planar layers, or

F(n,a)=F, exp(—ingg — ioezy) /2wy (1.11)
for cylindrical layeés. The non-zero components of E are then the components of these spectral forces at the
relevant layer boundary.

For an acoustic, rather than a mechanical excitation, it is convenient to express the pressure in the element
containing the excitation, as
P=7+P t7. (1.12)

where P, is the spectral form of the source term, B, is the spectril form of the pressure scatiered as though
the element boundaries were rigid, and P, is the speetral form of the pressure due Lo the normial inokion of the
layer boundaries. Hence, the spectral excitation on a boundary is f, + p,., with an appropriate sign lo ensure
that forces are positive when acting in the positive coordinale irection. Explicil expressions, omitted here,

Proc. 1.O.A. Vol 15 Part 6 (1993) 15



Proceedings of the Institute of Acoustics

THEGRETICAL METHODS FOR FIBRE-REINFORCED MATERIALS

for the point source and plane wave excitations may be found in [1] for planar layers and {2] for cylindrical
layers.

Of interest in the acoustic problems considered here is thie pressure in the upper hall-space {or exterior fluid).
For planar layers this pressure is related to the normal displacement of the upper boundary by

2 o0 la =] o
pe(z,y,2) = %/ f U‘(;;m expline + 18y + iyz)dad3 (1.13)

where v = \/k? — a? — #*, which may be evaluated immediately for plane wave incidence and otherwise whose
far-field is found from the usual stationary phase approximation [5] as

p1(R,8,8) = —puwus(@, B) exp(ik R)/2TR (1.14)

where @ = ksinfcos¢ and § = ksinflsing. For cylindrical layers the external pressure is related to the
normal displacement of the exterior boundary, r = a, by

o

2 & v) T3 ‘
pe(1-’¢lz): ru Z cxp(i"_(ﬁ] U;(n,( )|||n|’(",(1‘) CX[)('JZ)dJ (115)
27 J_e 7”|n|(7a}

n=—oo

in which ¥ = vk2 — o?, and whose far-field for non plane wave excitation is found [5] to be

—ipw? exp(ikR) i ()"l tey(n, k cos @) exp(ing)

pr(R8.¢)= — 700 i, (kasin0)

(1.16)

==rJ

9 ANISOTROPIC PLANAR LAYERS

The scattering and for radiation of sound from planar layered media, some layers of which may be anisotropic
may be accomplished by using the analysis described in the previous section, provided thal the malrix relating
sutface ‘spectral’ displacements and ‘spectral’ siresses for each individual layer can be obtained. Here it is
assumed that the layer under consideration occupies the z — y plane, 0 € z < A, of a Carlesian coordinate
system. Hence, the standard equations describing clastic motion may be expressed in terms of the stresses
(¢) within the layer as

802 [0z + 005y [0y + 004, /B2 = pduy [O,  Boye /O3 + Dayy [0y + Doy [0z = pd u, 017,
000z + B0y /Oy + Do, /0 = P, O (2.1)

where p is the density of the layer material. For linear elastic molions the stresses are related to the strains
by the matrix equation

Oz diy dia diy dig dis dis €1z

Tyy din dyy dyy dun duy dog Eyy

g2 | _ | dia doy dzz daa dan dse Ezz (2.9)
Ozy | | dia dua dsn daag dis dis Ery '
Oy dis dys das das  dss ';156 . Ey:

Tz dig dog das das dsq die Eix

in which the symmetric 6 x 6 matrix above contains 21 elastic constants. The number of independent constants
is governed by the microscopic structure of the material. For example orthotropic material has 9 independent
constants and isotropic material only 2. The standard definitions lor the strains (£},

Exz = Oug/0z, Eyy = ('j)uy/ay, €., = Ou.f0z,
Ezy = g /Oy + Ouy [0z, &y, = Bu, [0z + Bu, [dy, e, = Ou,/Bz + Ouy/0z (2.3)
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have been used above. Using the inverse Fourier trausform expression {1.2) for the displacement allows the
operators 3/8z and 8/8y to be replaced by the factors iee and i, respectively. Substitution of this expression
for the displacement, firstly into equation (2.3) 1o ohtain the strains, then into (2.2) o obtain the stresses
and finally into (2.1) results in the transformed equation of motion for the layer:

§2 3 (e, 3, 2) 0
(—X— —i¥(o,8)— + Z(cr,,’i‘)) (e, B2) | =] 0 (2.4)
0z 8z = o
ug(f.l,ﬁ,z) O

where X, Y(a, 3) and Z(o, #) are 3 x 3 matrices. This is the mnatrix form of a second order differential
equation with respect to z, with constant {(with respectl to z) coellicients. Hence its solutions are known Lo be
of the form

Ge(o, A7)\

iy (e, A,y) | (2.5)

g (er, 3, 7)

for certain values of y. These are found by first substituting the trial solution {2.5) into the propagation
matrix equation (2.4) to obtain

it (ev, 3, 7) (o, 3, 7) 0
(X +7Y(2,8) + Z(e, B)} | ityle,B,y) } =D 1) | dyle,fy) | =] 0 (2.6)
ﬂ.:(“’!/jy 7) ﬁa(a!ﬁl-:() 0
which has non-trivial solutions @ only when the determinant of Lhe matrix D vanishoes, i.e.,
ID(er, 3, 7)] = 0. (2.7)

This is a sixth order polynomial for ¥. For the general case when the material has 21 elastic constants
these roots must be found numerically, but in the special cases of orthotropic or isolropic materials it may
be written as a cubic equation for 4%, whose roots can be fouid analytically, For each of these roots Y a
corresponding solution vector Gi(a, B,%;) can also be lound from cquation (2.6). tence the gencral solution
for the displacement within the layer is a linear combination of alt these solutions,

Tx(a, B, 2) de(o )\
Uyl B,2) | =3 4 | wyledy) | e (2.8)
U (e, 8, 2) j=1 U,y (ee, /3, 75)

from which the ‘spectral’ displacements at the layer boundaries : = h and z = 0 may be written in matrix
notation as

u™(a, B) = R(er, DA (2.9)

Further substitution of the solution (2.8) into eguations (2.2) and (2.3) also allows the ‘spectral® stresses
within the layer to be written in terms of the coeflicients 4;, and in pariicular specializing these to the layer
boundaries results in another matrix equation

"™ a,3) = P, B)A (2.10)

Finally, eliminating A from equations (2.9) and (2.10) results in Lhe required matrix equation for the layer

P(o, AR e, Bul™Na, ) = §" Na, " e, B) = 6" (e, B). (2.11)

Some effects of anisotropy upon the acoustic properties are ilfustrated in Figure 4. This shows the plane wave
reflection coefficient, as a function of both frequency and angle of incidence, 8. In each of these plots the
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Figure 4: Plane Wave Reflection Coeflicient
(a) Isotropic Steel Plate, (b) CI'RP Plate ¢ = 0°, {c) CFRP Plate ¢ = 90°,

frequency range is 0 - 40kHz and the incidence angle varies from 0° (normal incidence) to 80°. The maximum
level for each plot is 0dB, and the surface plots are clipped at -20d1B, leading to an artificial flat base. Figure
4a is obtained for a Hcm thick isotropic steel plate in water. In Figures 4b and 4c the plate is a carbon fibre
reinforced plastic (CFRP), with stiffening fibres oriented along the z—axis, such thal the Young's modulus
for the material in the x—direction is approximately that of steel, but has only 1/27 of that value in the y and
z directions. The reflection coefficient is independent of the azimuthal angle, ¢, for the isotropic steel plate.
Figure 4b shows the reflection coefficient for ¢ = 0° (i.c. incidence in the plane of the stiffening filres) for the
CFRP plate, and 4¢ shows ¢ = 90° (i.e. incidence jn the plance perpendicular to the stilfening fibres). The
anisotropy results in significant differences both belween these iwo plots, and the plot for the isolropic steel
plate. In particular, for this example, the fat base is evident for Lhe CFRP plate for a range of frequencies
and angles, indicating a very low reflection coeflicient (< —20d1B) there. A detailed plysical explanation of
the features of the plots is outside the scope of this paper.

18 Proc. .O.A. Vol 15 Part 6 (1993)
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3 ANISOTROPIC CYLINDRICAL LAYERS

Another geometry, frequently of interest, is Lthat of concentric cylindrical layers. If some of these layers are
anisotropic, with the anisotropy cylindrical in character, then equation (2.2) relating stresses and strains in
an anisotropic planar layer is replaced by

a.; diy diy diy dig dis dig €2:

Tpp dip duo duy dag dog dog Epp

o | _ | diz duz day dua dus dys Epr (3.1)
06 | | dia dos dig dag das das €24 )
Ty dis dus dag das dss  dss Egr

Tr; dig diag dan dig dee  des Erz

in cylindrical polar coordinates. For the cylindrical geometry the method used in the planar case for solving
the equations of motion results in a second order, 3 »x 4 matrix, differential equation whose coefficients are
functions of r, and whose general solution is not immediately obvious. An exact solution in terms of Bessel
functions has been obtained for a special case of axial stiffening only.

A numerical procedure has however been utilized to oblain results with such cylindrically anisotropic layers.
This involves assuming first that the ‘spectral’ displacement across the layer thickness can be approximated
by a quadratic function of the radial coordinate,

3
Be
_ B
fi.{r.n o) e = 000 0 00 0 B4
To(rma) | =1 0 0 0 I » »2 0 0 0 Bs (3.2)
Te{r, n, a) 00 0 00 0 1 r Bo
e
Bs

\ %/

and minimizging the energy functional
1 o0 ¥s 4 b " ]
n = 5_/- / / [e*(r,d, ) (1, &, )+ pu*(r, ¢, 2)T0(r, ¢, 2)]rdrdgd:
—00 JO a

=] Vi oo T
—b/ / u'(b,qa,z)T'F(b,d),:)dwz-a/ [ u*(a, ¢, 2) Fla, ¢, z)déd: (3.3)
-0 J0 —eo S0 :

for the layer. The first term is potential cnergy, Lhe second term is kinetic energy and the final terms are
work done by the surface stresses F. By using the Fourier integral and series transformations (1.4) for the
displacement, the axial and circumnferential integrations in the definition of I are straightforward, leaving 1
as an integral across the layer thickness of the ‘spectral’ gnantitios with respect to r.

As the standard definitions for strains in cylindrical polar coordinates are

€z; = Ou, 8z, Epp = they/rdd + uy fr, Err = By [OF,
€29 = Oug/O0z + Ous [r09, €4 = Bup frdp + Dug/dr — ugfr, &, = OugfOz + Ou, [Or (3.4)

it is clear that each component of both € and & is a linear combination of the coeflicients ;. Thus Il contains
terms of the form 4;6; and f;. Hence minimizing Il with respect. Lo each F; in Lurn leads to a set of nine linear
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equations for the 3;, i = 1,9, The B can be related Lo the spectral displacements at the layer boundarcies, by
evaluating equation (3.2) at » = b, r = a and at some otlier position within the layer, r = ¢ = (a + 6)/2 for

example,

[ W (bn ) \ [ L6 000 0 00 0 (13| \
(b, n, a) 0 0 a4 1 b v 00 0 Ha
(b, n, o) 0 0O 0 0 0 1 b I
(e, n, a) Il e 200 0 0 0 0 A

a(ne)=| wele,ma) =1 0 0 0 1 ¢ & 00 U,, j;.r, (3.5)

Ue(c,n, @) 0o 0 00 0 1 ¢ ¢ e
u.{a,n,a) 1 o & 00 0 0 0 0 F7
uyla, n, a) 0 0 0 1 a «* 0 0 0 Bz

\ %(ena) ) \0O 0 0 00 0 I aa )\ )/

Hence the result of minimizing I can be expressed as a lincar equation for these spectral displacements:
S(n, aln(n, o) = F(n. o), (3.6)

in which the elements of § are integrals across the layer thickuess of polynomial functions of » whose coeffi-
cients are known, and which can be evaluated either nunerically, or analytically to minimize computer time,
and f‘(n,a) = (bF (b, n, o), bF,g,(b, n,a), bF (b u,a).0,0,0,aF, (a,n, ), anb(u, n,a),ale (e, n, o))t The re-
quired. 6 X 6 matrix S{n, ¢) may be chtained by inverting equation {3.6), thus expressing the spectral dis-
placements in terms of the surface spectral slresses as

. u(n, o) = S"(n,u)F(n,n). ' : (3.7)

By deleling the unwanted components ol displacernent (those at v = ¢), this can be expressed in terms of the

surface spectral stresses as _
-1 . ]

u™(n, o) = 8" (u,u)a'("”(u.r.r) (3.8)

which when inverted gives the required matrix equation {1.5) for the layer.

Except at very low frequencies or for very thin layers the quadratic variation of the displacement across the
layer thickness assumed above is unlikely Lo prove accurate, so the layer should lirst be subdivided inlo a
suitably large number of sublayers which are sulficiently thin, and the procedure ontlined above followed for
each sublayer, before finally discarding the displacements at all bul the boundaries of the original layer. "T'he
computer program should be designed to do this automatically.

The numerical results of Figure 5 were obtained from this procedure. This compares the backscallered
pressure at normal incidence for a Hem thick cylindrical steel shell, onter radius 5m, immersed in water but
containing no interior fluid (shown by the dotted line), with that for a CFRP shell with axial stiffening (5a) or
circumferential stiffening (5h). At low frequencies the circumferential stiffness controls Lhe scatiering, hence
in Figure 5a the scattering from the axially stiffencd CFRP shell is much greater than thai from the steel
shell due to the much lower vatue of Young’s modulus in the circumferential direction. In Figure 5b the low
frequency scatlering from the circumferentially stiffened CFRP shell is almost identical to that from the steel
shell due to the approximately equal values for Young’s modulus in the circumferential direction. Detailed
physical explanations of the olther features of these plots is outside the scope of this paper.

4 RIB STIFFENED SHELL

The procedures outlined above allow prediction of the acoustic characteristics of layered shells subjected Lo
various excitations. In this section the layered eylindreical system is stiffencd by an inflinite nomber of equally
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Figure 5: Backscattered Pressure at Normal Incidence
(a) Isotropic Steel Shell - .., CFRP shell with axial stiffening —mm— ,
(b) Isotropic Steel Shell -, CFRP shell with circumferential stifening .

spaced identical axisymmetric ribs, which cach excrt unknown renction forces and a bending moment on the
layered system. Hence for each rib, the relation hetween the reaction forces applied to the cylinder (opposite
to those applied to the rib), and the displacernent of the rib at the cylinder (the same as that of the cylinder
there) may be expressed in terms of the spectral stilfness matrix B for the ribs as

B(n)uin, ¢d) = =F(n, gd) (4.1)

where the ribs are located, with spacing d at : = gd, 4 = 0, £1,£2, .. . The unstiffened cylinder has the usual
spectral matrix equation

S(n,a(n, o) = Es(n, «) (4.2)
in which the excitation Es includes the excitations of the reaction forces and moments due to the ribs, and
which may be rewritten in slightly augmented form, so that explicit. expressions are available for the transform
of du, /B2 in terms not only of the reaction forces, but also explicitly in terms of the reaction moment,

up(n,a)j= D(n,a) Ep(n, o).
(4 x 4)

(4.3)

The solution for the spectral displacement of the periodically stiffened cylinder may be obtained explicitly,

after some algebra, by making use of the Poisson summmation theorem and eliminating the reaction forces and
moments due to the ribs, as

1

I+ (-
()
It is clear from this expression that for each evaluation of the scatiered or radiated pressure several, possibly
many, evaluations of S are required. Using the theory of the previous section each of the calculations of S

may themselves involve a fairly lengthy computation. In addition the pressure feld is a complicated function
of position, and in order to describe it fully evaluations at many locations may be required. A useful indicator

up(n,a) = D(n,o)Ep(n, o) — (1/d)D(n, a)B(r)x

-1
= 2mq > 2wy 2nyq
E Din, o+ —d—)B(n.) E Din, o+ —d—)ED(n,a + -

9=-00

' (4.4)

g=-c0
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Figure 6: Rib Stiffencd Shell Geometry

of the acoustic characteristics of the system is the lotal radiated or scatiered sound power, which smooths
out the spatial variation, but whose calculation requires an additional (nymerjcal) intogration.

To reduce computation times substantially the cylindrical system can be modelled, not by the ‘exact’ theory
. described in the previous section, but as an anisotropic shell. lustead of working with the displacements
at each of the layer boundaries the shell is described only by its displacément at its mean radius a. When
transverse shear and rotary inertia are neglecled the laminated composite shallow shell equations of Leissa &
Qatu [6] result in the (3 x 3) spectral dynamic stiffness equation in which

S11 = [Agsn®/a® +2Asan/a+ Appor®] — phus?,

S12 = [Aen?/a® + (A + Ass)enfu+ Aga?],

Sia = —i[Bisn®/a® +3Bgsa’nfia+ (Bia + 2Bsc)n’afa® + Baa® + Apu/a+ Agn/fa®],

Ry — [Aunz/a. 4+ 2A16nafa + Aggar” ] — poha?,

Saz = - [B“nafu + 3Bn° a/a + (B2 + 286s) r1211/n+ 83503+A1111./a2+ .’hgr.v/a] ,

Ssz = [Dun*/a®+4Den’a/a® + 2(D1: + Des)n’a’ /* + 4Dygna® o+
Daga® 4+ 2B11n?/a® + 4Bjsnafa® + 2Byan’ fa + A11/a2] — pah? +
pewHn(1ea) /v H  (1ea) — piw Ju(mial/%id ) (7i0) . - . (4.B)

which reduce, for a single isotropic layer, to the usual Dounell-Mushtari shell equations [5]). The stiffness
values A;j;, Bij and D;; are found by first identifying T and ¥ axes with the local circumferential and = axes
for each layer so that for unidirectional fibre-reinforcement within this pla,ne the i in-plane stress-strain relations
can be written .

T \ Qn @ 9_16 EH: ‘ : L
T | = Qu_ @2y Qy Ew . (4.8
Ty Qe Q. Wie E""y' '

where the coefficients @ may be obtained from mixture theories together w1th a transformation to account
for the stacking angle of the fibres within the layer. The constants for the shell are obtained by summing the
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Figure 7:  Acoustic Power in Water due to Radial (. _) and Axial (---) Point Force Fxcitation
() Steel Shell, No Ribs, (b) Steel Shell With Ribs
(c) Axially Reinforced CFRP Shell, No Ribs, (d) Axially Reinforced CFRP Shell With Ribs.

value of these quantities for each of the thin layers which conipose the laminated amsotropic shell. Henee,

M Af

—{m) : 1 ==,
.4,'1' E= ZQU (T — €ae1), B,‘j =3 Qij {6, - 4.2,
rn:ﬂ{l B na?l (47]
Fmoa e :
Di.f = %Z i) (trll - !';;JI—IJ‘ s = %ZPIJ”J“’:” - J‘mmj ).
m=1 m=I

where ¢ = 2y — 2. with z,, the T coordinate of the upper surface of the wmth layer, and z, the T coordinate
of the laminates midsurface.

The ribs stiffening the laminated shell have been modelled by using a finite element procedure to assemble
axisymmetric conical shell elements. The stiflnesses lor cach element, are caleniated in the same way as those
of the laminated cylindrical shell, outlined above.

Figure 7 shows an example of the effects of equally spaced ribs, and compares the effect on the acoustic power
radiated in water due to a radial or an axial force applicd to a rih connection point, for a stecl shell and a
CFRP shell with axial reinforcement. In this example the shell radius is [0cm and the thickness 0.2em. When
the excitation is a radial force the power levels from the CERP shell are slightly higher than those fromn the
steel shell, bul for the axial force the level of the steel shell is higher.
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Figure 8: Geometry and Co-ordinate Systetns For a Finite Axisynnnetric Structure

5 PFINITE AXISYMMETRIC STRUCTURIS

A finite axisymunetric anisotropic structure has been modelled holh by laminaled composite shell finite ele-
ments, and by anisotropic axisymmimetric solid elements. 'Uhe theory for conicil shell elements is uselul when
the variation through the shell thicknesses of the field guantities is small. For such an eleinent a cubic vari-
ation with distance along the shell is assumed for the pormal displaceient and a linear variation for both
the circumferential displacement and the displacemient along the sheil. A procedure similar to that outlined
in the cylindrical layers section of this paper resulls, for cach c¢ircwmlerential harmonic, in o mairix relating
the displacements of the ends of the element to the forces applied there. Such element matrices can then he
assembled, reflecting continuity of displacement, to form a matrix equalion relating the displacements of cach
end of each element to the external forces applied to the clement houndaries.

For the axisymmetric solid element, displacements are azsmined to vary quadratically with both radius and
axial distance, for each harmonic, and hence a 9-noded clement is required to provide the 27 displacements
corresponding to the 27 unknown coeflicients. Use of the constitutive equation (3.1) and a minimization,
similar to that of section 3, with respect to the unknown cocllicients provides a suitable niatrix equation
relating displacéments and forces at the clement boundaries in the absence of fluid loading. Extracting the
relation between norrnal forces and excitations from this it can be writlen in the usual form, for each harmonic,
as .

S(n)W(n) = E(n) (5.1)

where 8 is an m x m matrix if the structure is divided into m — | axisymmetric elements. Fluid loading
effects are accounted for by using the Helmholtz integral furmufa, which relates the radiated pressure in the
cxterior fluid to an integral over the body surface of hutl the pressure combined with the normal gradient
of the Green’s function and the normal displacement combined with the Greens function. Discretizing this
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Figure 9: Backscattered Pressure fron an Anisolropic Spherical Shell,
o Conical Shell Model, Axisymmetric Solid Model
(a) Circumferential Reinlorcement, (b) Meridional Reinforeement

allows the nodal pressures to be related to the normal displacements, hience
P(n) = D(mW(n). (5.2)
The nodal forces are obhtained by integrating the pressures over a suitable aren,
F(n)= —AP(n). (5.3)
Thus with exterior fluid loading the shell finite element equation (5.1) becomes
[S(n) + AD(n)[W(n) = E(n} — A[Pi(n) + Py(n)] (5.4)

where E(n) is the vector of externally applied nodal forces, Py(n} is the veetor of nodal pressures due to any
incident acoustic pressure and P.(n) is the vectar of nodal pressures due to the rigid reflection at the surface
of such an incident wave,

P.(n) = ~D(n)W;(n) (5.5)
where W, is the nodal displacement in the fluid duc to the incident wave alone, Equation (5.4) can be inverted
to calculate W(n), the nodal displacement of the structure due to its elastic motion. A further application of
the Helmholtz integral formula using the nodal surface displacement W(n) — Wy(n), and the nodal surface
pressure D{n)[W(n) — W;(n)] gives the scaitered or radinted sound pressure.

Numerical tests show close agreement between values ohlained using Lhis theory and exact theory for a rigid
spherical shell, and for an isotropic spherical shell at low [requencics, bul poorer agreement as the frequency
increases, probably due to the need to increase the number of elements at the higher frequencies. Figure 9
shows some results oblained for the backscatiered pressure for an empty CFRI? spherical shell of radius 1m
and thickness lem, in water. Figure %a shows results obtained from botls models for fibre reinforcement in the
circumferential direction. There is good agreement. "T'he results of meridional stiffening is shown in, Figure
9b. The two models agree well at low frequencies but diverge as the frequency increases.
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