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1 INTRODUCTION

The use of fibre reinforced materials is becoming more common as they can be used to form strong lightweight
structures. There is therefore a requirement to understand their acoustic properties The theoretical methods
outlined in this paper have beendeveloped at Imperial College and at DRA Ilaslar to provide a basis for
computer programs to predict numerically the acoustic scattering by, or radiation from, certain relevant
canonical problems. Parametric studies using such programs should help to identify the physical mechanisms
controlling the acoustic properties of these materials, Previous work at DRA has developed theoretical
methods and computer programs for analyzing a variety of problems in which each component is isotropic.
The aim of the current work was to extend these models so that they can include anisotropic components.
The four models discussed in this paper are planar layered media [I], cylindrically layered media [‘2], a rib
stifiened cylindrical shell and a finite axisymmetric body The previous work makes use of the method
of ‘dynamic stifi'ness coupling in the spectral domain’ to assemble elements of acoustic fluid, viscous fluid
and isotropic elastic solids into a global system matrix equation, from which it is straightforward to obtain
acoustic properties This method will be used here also Thus for planar layers in the 2:—y plane, see Figure 1,
spectral quantities are obtained by Fourier transformation with respect to x and y, e.g. for the displacement
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whilst in cylindrical (r,4),z) geometry, see Figure 2, it is natural to make use of Fourier transforms with
respect to z and Fourier series with respect to d:

Hziflflyfll 1 27 Du uz(r,¢,z) I
17¢(r, 11,0) : / ri¢(r,¢,z) e"”‘°e'""d:d¢ (1.3)
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whose inverse is
":ll'.¢ull 1 00 (x, EAT, 11,01) '

u¢(r,¢, z) = (:"w/ flag”, 11,11) e'mtlu. (1,4)
u,(r,¢,z) "Hz-N '°° fi,(1-,n,a)

In these and all subsequent equations the time—harmonic factor exp(—iwl) is omitted.

For the linear theories used in acoustics the surface spectral stresses at the layer boundaries can be linearly
related to the displacements in each of the three coordinate directions there. Hence for the mth layer _

5(m)u[m) :&(IH’ (15)

where, see Figure 3, in the planar geometry

"The work described in this paper has been undertaken for DRA and has been carried out by
E. A. Skelton at Imperial College and by J, H. James at DRA, Haslar. Gnsport, Hants P012 2M1.
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‘1‘") = (figm)(u./3),Elimhafl).figmfufl),ELmHJMJJ).fi§'"+”(a,fl),fi§f”+"(u,m)7} (16)
6"") = (it"(umafla.rata'r’tu.warmth/1),genome?“Nam)":

and for cylinders

110“) = (figm)(n,a),fi(¢ml(n,a),Tif.””(n,cr),figm+ll(n,(r),fi$"+l)(u,a),fi£m+n(n,u))7l, (17)

6w” = (Flimwtahafizlm,o),§l¥l)(n,oz),Elgll'wiz,n),3:22“anGLEw‘Hlm’unr. '

For a system consisting of N layers these matrices can be assembled into a (3N +3) x (3N + 3) system matrix,
by eliminating the surface stresses. as

Sir = E (1.8)

in which 11 = ((fi('))T,(fi2’)7,...,(fi(N“))T)T, E is the externally applied stress vector and the handed
matrix S is I

—se+si 5;
—s3 —s;+s: 5;

—s3 —s:+s3 s;
—s, —s}+s} s;

_s.f’-" —sf’"”+s”-’ 5.5"”
_Sl\I—2 _S4N-2+s£—I Sg—i

—s,,-' -s,”“‘+s£” 55V
—53 —'5,N+s'|

in which the individual matrices 5”” have been partitioned into the 4 (.‘l x 3) sulunatrices 81”, 51,", 5},” and
52", and Se is a 3 X 3 matrix representing either the upper half—space or the exterior fluid, and S‘ is a 3 X 3
matrix representing either the lower half-space or the interior lluid, details of which may he found elsewhere.

The vector E is the matrix of the applied spectral excitations. For a mechanical point force excitation applied
to a layer boundary at (1:0,y0, :0) or, in cylindrical polar coordinates, (rn,¢u,zu),

F = F050E - inlay—.110): F03“: — 3015M — dial/7'0 (L9)

the spectral representations of which are easily obtained from the transform definitions as

FUN?) = Fo cxlit-im‘u - WHO) (1-10)

for planar layers, or

Efn,u) : F0 exp(—in¢g — hind/27w" (1.11)
. . \

for cylindrical layers. The non—zero components of E are then the components of these spectral forces at the
relevant layer boundary.

For an acoustic, rather than a mechanical excitation, it is convenient to express the pressure in the element
containing the excitation, as

flzfii +17r+l79 (1-12)
where 1—), is the spectral form of the source term, 17, is the spectral form of the pressure scattered as though
the element boundaries were rigid, and fie is the spectral form of the pressure due to the normal motion of the
layer boundaries. Hence, the spectral excitation on a boundary is F, + E, with an appropriate sign to ensure
that forces are positive when acting in the positive coordinate direction. Explicit expressions, omitted here,
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for the point source and plane wave excitations may be found in [l] for planar layers and [2] for cylindrical

layers

Of interest in the acoustic problems considered here is the pressure in the upper half-space (or exterior fluid).

For planar layers this pressure is related to the normal displacement of the upper boundary by

 

2 00 N

pe(z, y, z) = / U‘l:’m expliru: + ifly + i7z)dml/3 (1.13)

where 72 VIC2 — a2 — fig, which may be evaluated immediately for plane wave incidence and otherwise whose
far—field is found from the usual stationary phase approximation [.5] as

mew = -Pw2ua(67,§lexnlilfiR)/2WR (1.14)
where E = Icsin0cos¢ and E = ksinflsind). For cylindrical layers the external pressure is related to the
normal displacement of the exterior boundary‘ 1- : a, by

2 oo

paw»): g— E expimm [N (1.15)n.n=—co

in which 7 = V“ — a2, and whose far—field for non plane wave excitation is found [5] to be

—ipw2 exp(ikR) (—i)l”l "Hm, I: cos 6) exp(in.¢)
“(mam : nklzsino llin'UcasinOJ (1.16)

VI=—F.\'J

2 ANISOTROPIC PLAN/Ht. LAYERS I

The scattering and/or radiation of sound from planar layered mediaI some layers of which may be anisotropic
may be accomplished by using the analysis described in the previous section, provided that the matrix relating
surface ‘spectral’ displacements and ‘spectral' stresses for each individual layer can be obtained. Here it is
assumed that the layer under consideration occupies the :r — y plane, I) g z 5 IL, of a Cartesian coordinate
systemi Hence, the standard equations describing elastic motion may be expressed in terms of the stresses
(0') within the layer as

5012/31: + any/3y + BUN/6: = paint/filly, flaw/Ha: + flaw/011+ Haw/H: : [10." uy/ifl'",

Ban/6:1: + Bow/By + Ban/é): = [finial/OF, (2.1)

where p is the density ofthe layer material. For linear elastic motions the stresses are related to the strains
by the matrix equation

0:: (111 (112 dill '114 (Ila dlfi Eu

aw (In d2; (I23 r124 r135 day, 6“

Wu _ dia ([23 (Isa ([34 flan due Eu (2 2)

any _ 1114 ([24 6134 (144 (Lin (145 fry ‘
Uyz dis 1125 (135 (145 £155 {[56 5y.-
(722 dlfi (126 (Ian; (’46 (15!: "'56 5::

in which the symmetric 6 x 6matrix above contains 21 elastic constants. The number of independent constants
is governed by the microsaopic structure ofthe material. For example orthotropic material has 9 independent
constants and isotropic material only ‘2‘ The standard definitions for the strains (5),

52: = But/3s, 5” = Orly/(7y, a“ = (QM/02.

é'zy = But/6y + Buy/01. 5y; = Buy/02 + (Jul/011‘ 5;, = But/(€11: + flux/(32 (2.3)
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have beenused above. Using the inverse Fourier transform expression (1.2) for the displacement allows the
operators 6/52: and 6/63,: to be replaced by the {actors in and if), respectively. Substitution of this expression
for the displacement, firstly into equation (2.3) to obtain the strains, then into (2.2) to obtain the stresses
and finally into (2.1) results in the transformed equation of motion for the layer:

82 a Ht((v,fl,z) 0

(—X—z —iY(a,fl)— +Z((v,/3)) 17y(4v,[3,z) = 0 (2.4)
02 a: _

u,(o,fi,z 0

where X‘ Y(a.[3) and Z(a,fi)'are 3 X 3 matrices This is the matrix form of a second order differential
equation with respect to z, with constant(with respect to :) coefficients. Hence its solutions are known to be
of the form ‘

( mun/3.7)

 

Mai/1,7) cm (2‘5)
{blah/317')

for certain values of 7. These are found by first substituting the trial solution (2.5) into the propagation
matrix equation (2.4) to obtain

which/3.7) faith/t7) 0
(72X + 7Yta,fl) + Z(0n fii) Mar. I17) = D(tv. [1.7) 1-ly(’Yi/3.“/) = 0 (2-6)

{kW/t7) 112mm) 0

which has non-trivial solutions fl only when the determinant of the matrix D vanishes. Lei,

lD(u./3,7)l = 0. (2.7)

This is a sixth order polynomial for 7. For the general case when the material has 2] elastic constants
these roots must be found numerically. but in the special cases of orthotropic or isotropic materials it may
be written as a cubic equation for 72, whose roots can be found analytically. For each of these roots 7j a
corresponding solution vector fi(a,fl, 71-) can also he found from equation (2.6), Hence the general solution
for the displacement within the layer is a linear combination of all these solutions,

fiziafliz) 6 Monte)
Ey(a,[3,z) : Z A; {type/L71.) 0W (2,3)
mun/3,2) i=1 mitt/Jim

from which the ‘spectral’ displacements at the layer boundaries ; = Ii and z = 0 may be written in matrix
notation as

“Worm = R(o,fl)A (29)
Further substitution of the solution (2.8) into equations (2.2) and (2.3) also allows the ‘spectral. stresses
within the layer to be written in terms of the cocllicients Ar, and in particular specializing these to the layer
boundaries results in another matrix equation

(Mums) = 13mm}; (2.10)

Finally, eliminating A from equations (2.9) and (2,10) results in the required matrix equation for the layer

P(cv,/?)R“(a,mu‘m’unxii = 5""l(U‘/3)Il“”’(o,fl) = Ema/3). (211)

Some effects of anisotropy upon the acoustic properties are illustrated in Figure 4. This shows the plane wave
reflection coefficient. as a function of both frequency and angle of incidence, 0. In each of these plots the
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Figure 4: Plane Wave Reflection Cocllicient

 

(a) Isotropic Steel Plate, (1)) ltl’ Plate ¢ : 0°, (c) CFRP Plate 4; = 90°.

frequency range is 0 — 40kHz and the incidence angle varies from 0" (normal incidence) to 80°. The maximum
level for each plot is OdB. and the surface plots are clipped at and", leading to an artificial flat base. Figure
4a is obtained for a 5cm thick isotropic steel plate in water. In Figures 4b and 4c the plate is a carbon fibre
reinforced plastic (CFRP), with stiffening fibres oriented along the m—axis, such that the Young's modulus
for the material in the t—direction is approximater that of steel. but hasonly 1/27 of that value in the y and
2 directions. The reflection coefficient is independent of the azimuthal angle, 4), for the isotrdpic steel plate.
Figure 4b shows the reflection coefficient for d) = 0° (Le. incidence in the plane of the stilhming fibres) for the
CFRP plate. and 4c shows at = 90° (i.e. incidence _in the plane perpendicular to the still'ening fibres). The
anisotropy results in significant difierences both between these two plots, and the plot for the isotropic steel
plate. In particular, for this example, the flat hast: is evident. for the CFRP plate for a range of frequencies
and angles, indicating a very low reflection coellicient (< —20dll) there. A detailed physical explanation of
the features of the plots is outside the scope of this paper.

18 Free. I.O.A. Vol 15 Part 6 (1993)
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3 ANISOTROPIC CYLINDRJCAL LAYERS

Another geometry, frequently of interest, is that of concentric cylindrical layers. If some of these layers are
anisotropic, with the anisotropy cylindrical in character, then equation (22) relating stresses and strains in
an anisotropic planar layer is replaced by

0:; till (112 '11:; (114 £115 le in
0w dl‘l £122 112:: (124 £125 426 5%
arr _ dia ([23 ([33 ([34 [135 ([35 Err (3 1)
02¢ _ (114 (124 ([114 £144 1145 ([45 62¢ .
U¢r dis (125 1135 €145 115:. (156 Star
an 1116 1125 (Inn r145 (156 (Isa En

in cylindrical polar coordinates. For the cylindrical geometry the method used in the planar case for solving
the equations of motion results in a second order, it x 3 matrix, differential equation whose coefficients are
functions of r, and whose general solution is not immediately obvious. An exact solution in terms of Bessel
functions has been obtained for a special case of axial stiffening only‘

A numerical procedure has however been utilized to obtain results with such cylindrically anisotropic layers
This involves assuming first that the ‘spectral‘ (lispl‘acenient across the layer thickness can be approximated
by a quadratic function of the radial coordinate,

WAT, n, a) 1 r i'2 U U 0 U U U ,34
H¢(r, n, a) | r 1'2 U U 0 fly, (3.2)
EH, 1:, a) 0 (l U 0 (l 0 l 1' 1‘2 130

|| c

and minimizing the energy functional

1 m 21 b h V

H = / / [e'(r, qt, 2)1 a'(r, (f), z) + [ni'(1-, ¢, z)7l'1(r, 4;, z)]rdrd¢rlz
—oo 0 a

m 2w w 2:

— ' b T : — ' : T ’1 : : ‘ ..b/flwl; u ( ,¢,z) F(b,¢1 )dedz a/flv/U u (a.¢, ) IF(a.q, )ddzd (J '3)

for the layer, The first term is potential energy, the second term is kinetic energy and the final terms are
work doneby the surface stresses f. By using the Fourier integral and series transformations (1.4) for the
displacement, the axial and circumferential integrations in the definition of I] are straightforward. leaving H
as an integral across the layer thickness of the ‘spectral’ quantities with respect to 1'.

As the standard definitions for strains in cylindrical polar coordinates are

62, = ariz/Bz, 5W, : (ha/rad; + ur/r', 5" = Bur/0r,

em = aim/('12 + Buz/rao, a4". = Bur/1'04) + (Width — rap/1" 5,; : Our/02 +0Ilz/(71' (3.4)

it is clear that each component of both e: and (7 is a linear combination of the coefficients (3;. Thus Il contains
terms of the form fiifij and 13;. Hence minimizing I'] with respect to each fli in turn leads to a set of nine linear
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equations for the [3.~, i = 1, 9. The [1.- can he related to the spectral displacements at the layer boundaries, by

evaluating equation (3.2) at i- = b, r = u and at some other position within the layer. 1- = c = (a + b)/‘2 for

example,
mama) 1 I) b'~’ 0 (l u u 0 0 i3.
i¢(b,n,fl) 0 u l) l b I:’-’ u 0 0 m
ir(b.n.a) U u (i U (l 1 b I:2 fin
H;(c.n.u-) J c r” 0 (l U 0 ll 0 [14

out"): fi¢(c,n,u) = U U 0 I (' c'~' () 0 u as (3.5)
fir(c,n.a) (i u 0 0 0 0 1 r.- fir,
H;(a,n,a) l (I a2 U 0 0 0 0 U [)7

E¢(a,n,a) 0 0 0 l a (13 0 0 0 [)‘3

n,(a.n,a) 0 0 0 0 0 0 1 n a? it.

Hence the result of minimizing fl can be expressed as a linear equation for these spectral displacements:

S(n,(r)l'l(n.u-) = FULO'), (3-6)

in which the elements of S are integrals across the layer thickness of polynomial functions of 7' whose coeffi-

cients are known, and which can be evaluated either numerically, or analytically to minimize computer time,

and F(n,a) = (bF;(b,11,0),!)F‘gtb,n,CUIbTrlb,1h“).(l,U,U.flT;((l,1t,u),(tF¢(ll,71,0),0Tr(u,11, L1))T. The re-

quired 6 x 6 matrix Sln,u) may- be obtained by inverting equation (3.6), thus expressing the spectral dis-

placements in terms of the surface spectral stresses as

u(n,n) : S"(n,u)F(n,n). V (3.7)

By deleting the unwanted components of displacement (those at r = c), this can be expressed in terms of the

surface spectral stresses'as

u["'l(n, n) : Sl"'l-|(n, u)&("”(n,(.r) (3.8)

which when inverted gives the required matrix equation (L5) for the layer.

Except at very low frequencies or for very thin layers the quadratic variation of the displacement across the

layer thickness assumed above is unlikely to prove accurate, so the layer should lirst be subdivided into a

suitably large number of sublayers which are sufficiently thin. and the procedure outlined above followed for

each sublayer, before finally discarding the displacements at all lint the boundaries of the original layer. The
computer program should he designed to do this automatically

The numerical results of Figure 5 were obtained from this procedure. This compares the backscaltered

pressure at normal incidence for a 5cm thick cylindrical steel shell, outer radius 5m. innnersed in water but

containing no interior fluid (shown by the dotted line). with that for a CFRP shell with axial stiffening (5a) or

circumferential stiffening (5b). At low frequencies the circumferential stiffness controls the scattering, hence

in Figure 5a the scattering from the axially still'ened CFIU’ shell is much greater than that from the steel

shell due to the much lower value of Young’s modulus in the circumferential direction In Figure 5|) the low

frequency scattering from the circumferentially stiffened Gl"ltl’ shell is almost identical to that from the steel

shell due to the approximately equal values for Young’s modulus ill the circumferential direction. Detailed
physical explanations of the other features of these plots is outsidi- the scope of this paper,

4 RIB S’J‘ll“l“lCNlill) Slll‘llili

The procedures outlined above allow prediction of the acoustic characteristics of layered shells subjected to

various excitations In this section the layered cylindrical system is stiffened by aninfinite number of equally

20 Proc. I.O.A. Vol 15 Part 6 (1993)
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Figure 5: Backseattered Pressure at Normal Incidence
(a) Isotropic Steel Shell ~~-, Cl’ltP shell with axial stiffening _
(b) Isotropic Steel Shell ~ ' -, CFRP shell with circumferential stiffening _.

spaced identical axisymmetric ribs, which each exert unknown reaction forces and a bending moment on the
layered system. Hence for each rib, the relation between the reaction forces applied to the cylinder (opposite
to those applied to the rib), and the displacement of the rib at the cylinder (the same as that of the cylinder
there) may be expressed in terms of the spectral stillness matrix B for the ribs as

B(n)u(n,q(l) = —F(n.,q(l) (4.1)

where the ribs are located, with spacing d at z 2 gr], I] = 0,:t1,:l:2, . i u The unstiffened cylinder has the usual
spectral matrix equation

S(n, a)u(n, a): E5(n, a) (4.2)

in which the excitation E5 includes the excitations of the reaction forces and moments due to the ribs, and
which may be rewritten in slightly augmented form, so that explicit expressions are available for the transform
of Bur/82 in terms not only of the reaction forces, but also explicitly in terms of the reaction moment,

uD(n,vz)= D(n,a) Emma). (4.3)
(4 x 4)

The solution for the spectral displacement of the periodically stilfened cylinder may be obtained explicitly,
after some algebra, by making use of thePoisson summation theorem and eliminating the reaction forces and
moments due to the ribs, as I

up(n,a) 2 DUI, u)En(n, a) — (l/d)D(n, a)B(n)x

T (l

—1
1 °° 2 m . I .

[1+ (3) a; D(""’+ %)B(") Z D(".u+ 2W’)Eo(n,a+ fl ‘ (4.4)
qz—oo

It is clear from this expression that for each evaluation of the scattered or radiated pressure several, possibly
many, evaluations of S are required. Using the theory of the previous section each of the calculations of S
may themselves involve a fairly lengthy computation. In addition the pressure field is a complicated function
of position, and in order to describe it fully evaluations at many locations may be required. A useful indicator

Proc; I.O,A. -Vol 15 Pan 6 (1993) 21  
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of the acoustic characteristics of the system is the total radiated or scattered sound power, which smooths
out the spatial variation. but whose calculation requires an additional (numerical) integration.

To reduce computation times substantially the cylindrical system can be modelled, not. by the ‘exact’ theory

_V described in the'previous section, but as an anisotropic shell. Instead of working with the displacements
at each of the layer boundaries the shell is described only by its displacement at its mean radius ui When

transverse shear and rotary inertia are neglected the laminated composite shallow shell equations of Leissa &

Qatu [6] result in the (3 x 3) spectral dynamic stillness equation in which

5'11 = [.465712/a2 + 2Agsufl/fl + 1422112} — f!,/lw2,

5'12 = [Ang/uz+(Alg+4455)un/u+ A2002],

513 = —i [Elana/r13 + BstaZn/rl + (Bl-3 + QBGGM'Ju/u” + 112-1113 + Algu/a + Alan/(12],

5'22 2 [Annz/aZ+2A15na/a+A5602] _f‘ahw2v

523 = —i[Buns/r13+33151120/02+(Blg+2355)uzn/U+ 83503+ Ann/(12+ Alma/a],

$33 = [D11n4/a‘ + 4D16naa/a3 + 2H)” + Dag)n2a3/(L"‘ + 4026na3/a+

D2204 + QBllnz/ua + 4B15noz/a2 + 231202/(t+ All/a2] — who;2 +

Pewzllnhaal/WHLHN) - Piw231-(7ial/7-‘Jiil’h‘0l " - ' (4-5)

which reduce, for a single isotropic layer, to the usual Donnell—Mushtari shell equations The stiffness
values 14.], Bij and Di,- are found by first identifying E and y axes with the local circumferential and z axes
for each layer so that for unidirectional fibre—reinforcement within this plane the iii—plane stress-strain relations
can be written _ _ _ _ - -

_ Q“ 912 915 I fi' ' v

W = Qi2_ 922 Q26 W, (4-6)
T 010 Q25 ch T i

where the coefficients a may be obtained from mixture theories together within transformation to account

for the stacking angle of the fibres within the layer. The constants for the Shell are obtained by summing the.

QI u m

Ql mu

Q "I
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(c) Axially Reinforced CFRP Shell, No Itilis, (d) Axially lteinlbrced CHtP Shell With Ribs

 

value of these quantities For each of the thin layers which compose the laminated anisotropic shell, lloucc,

M M
—(m) —lm) r. -.

Aij = ZQU (1m —lm-lli ij : §Zer (Iii: “tin—IL
m=l m:l (4 7)
M ) M t

—('" : .Dij = g,- (15;, —t3,_, , II: = izl'hnlt’vm " 1.114),
"5:1 m:|

where tm : zm — at with :m the 3 coordinate of the upper surface of the mth layer, and :c the 3 coordinate
of the laminates midsurl‘ace.

The ribs stiffening the laminated shell have been modelled by using a linite element procedure to assemble
axisymmetric conical shell elements The stiffnesses for each element are calculated in the same way as those
of the laminated cylindrical shell, outlined above.

Figure 7 shows an example of the effects of equally spaced rilis, and compares the etl'ect on the acoustic power
radiated in water due to a radial or an axial force applied to a rih connection point. for a steel shell and a
CFRP shell with axial reinforcement In this example the shell radius is 106m and the thickness 0.201]. When
the excitation is a radial force the power levels from the ('Jli‘ltl’ shcll are slightly higher than those from the
steel shell, but for the axial force the level of the steel shell is higher.
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Figure 8: Geometry and (Jo—ordinate System.» For a l“inilv Axisymmetrir Structure

.5 ll'lNlTlL‘ AXISYMMlC'l'lth S'l‘lillC'l‘llltl‘lS

A finite axisymmetric anisotropic structure has been mndvlled hoth hy laminated composite shell finite ele—
ments, and by anisotropic axisymmetric solid elements. The theory for conical shell elements is useful when
the variation through the shell thicknesses of the field qtmntitic. small. For such an element a cubic vari-
ation with distance along the shell is assumed for the normal displacement and a linear variation for both
the circumferential displacement and the displacement along" the slu‘ll. A procedure similar to that outlined
in the cylindrical layers section of this paper results, for math circumlirrcntial harmonic, in a matrix relating
the displacements of the ends of the element to the forms applied there. Such element matrices can then he
assembled, reflecting continuity ofdisplacement, to form a matrix equation relating the displacements of each
end of each element to the external forces applied to llll‘ t‘lvment houndarivs.

For the axisymmetric solid element, displacements ill't‘ nssunu'd to vary quadratically with both radius and
axial distance, for each harmonic, and hence a 9~nodvd olenwnt is required to provide the 27 displacements
corresponding to the 27 unknown coefficients. Use of the constitutive equation (5H) and a minimization,
similar to that of section 3, with respect to the unknown mollicivnI-s provides a suitable matrix equation
relating displacements and forces at the element boundaries in the ahsunt'e of fluid loading. Extracting the
relation between normal forces and excitations from this it, can he written in the usual form, for each harmonic,
as

S(n)W(n) = E(n) (111)

where S is an m x in matrix if the structure is dividth into in — | axisymmetrir elements. ["luid loading
effects are accounted for by using the Helmholtz integral formula. which relates the radiated pressure in the
exterior fluid to an integral over the body surface of l)ulll thi- pru. ll't‘ combined with the normal gradient.
of the Green’s function and the normal displacement. mmhinml with the (h'mn‘s function. Discretizing this
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Figure 9: Backseattered Pressure from nn Anisotropic Spherical Shell,
0 Conical Shell Model, Axisymmetrie Solid Model

(a) Circumferential Reinfm-cmrwnt, (h) l\’l«:ridional Reinforcement

allows the nodal pressures to be related to the normal displacements, hence

PM) : D(n)W(n). (5.2)

The nodal forces are obtained by integrating the pressures over a suitnblv nrun,

F(n) = —AP(n). (5.3)

Thus with exterior fluid loading the shell finite element equation (5.1) becomes

[S(n) + AD(n)]W(n) : E(n) — A[P,-(n) + P,.(n)] (5.4)

where E(n) is the vector of externally applied nodal forces. PAH) is the vector of nodal pressures due to any
incident acoustic pressure and P,(n) is the vector of nodal pressures due to the rigid rcllection at the surface
of such an incident wave.

Pan) = .—D(~)W.-(n) (5.5)
where W‘- is the nodal displacement in the fluid due to the incident wave alone. Equation (5/1) can be inverted
to calculate W(n), the nodal displacement ofthe structurn due to its elastic motion. A further application of
the Helmholtz integral formula using the nodal surface displacement W(n) — W,-(1i). and the nodal surface
pressure D(n)[W(n) — W;(n)] gives the scattered or rndinl‘od sound pressure.

Numerical tests show close agreement between values obtained using this theory and exact theory for a rigid
spherical shell, and for an isotropic spherical shell at low frequencies, but poorer agreement as the frequency
increases, probably due to the need to increase the numlmr of elements at the higher frequencies Figure 9
shows some results obtained for the backscattered pl'ussllrt‘ for an empty leltl’ spherical shell of radius 1m
and thickness 1cm, in water. Figure 9a shows results obtained from both models for fibre reinforcement in the
circumferential direction. There is good agreement. The results of meridional stiffening is shown in, Figure
9b. The two models agree well at low frequencies but diverge as the frequency increases
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