
 

inter-mire
05

UNDERSTANDING THE DYNAMIC BEHAVIOR OF COMPLEX VIBRATORS

Eugen J. Skudrzyk

Applied Research Laboratory and Physics Department of the

Pennsylvania State University. PA). Box 30 State College,
Pennsylvania 1680l.

The dynamic behavior of vibrators can be described by progressive wave

fields, or by the contributions of its natural modes. The first method

leads to the mean value theory, which predicts the mesa line through

the logarithmically recorded frequency response of the vibrator from

the first resonance on to very highfrequencies, whereas the second

method leads to a simple two mode circuit that describes the vibrator

by its resonance peaks and antitesonance minim-a. When a vibrator is
excited at an interior point by a point force, a progressive wave

field Vc propagates towards its boundaries- The reflections return
with different phases. and when averaged over a frequency interval of

several resonances, they do not contribute to the geometric mean between

the resonance maxims and the antiresonance minima. Thus, the mean line

through the logarithmically recorded frequency response curve is I
identical with the amplitude of wave field Vc that is generated by the

driver and propagates away from it as if the vibrator were infinitely

large or had ideally absorbent boundaries‘ This wave field is the

solution of the differential equation for a point force acting on an
infinitely extendedhut otherwise similar vibrator. It is defined as
the characteristic velocity, Vc. of the vibrator and the admittance as

the characteristic admittance, Yc. in analogy to the characteristic

admittance of a telephone line or a chain of filters. The

characteristic admittance is obtained by computing the solution of the
differential equation for a point force for the infinitely-extended
vibrator. or in a still simpler manner, by adding up the modal
contributions .

Because for computing Ycthe vibrator is assumed to be very large, and
the density of the resonances is high, the summation can be replaced by
an integration. 111e, real part of the resulting integral has a pole at
the driving frequency and yields the contribution of the resonance
range of the vibrator:
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where (2‘J is the average radial frequency different between successive 1
mode resonances 'in the frequency rane of the excitation, and NV are
the paint mde masses, defined by (I; ‘
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lwhich are obtained by simplecomputations. They are usual}y equal to
half or one-quarter of the mass of the vibrator. Here <5“ > is the
vibrator average square displacement and E (A) and EUU") are the
displacements at the point of interest "A"Vand at the driver at "F".
M is the total mass of the vibrator. Because evhv is asymptotically
independent of the size of the vibratorI it usually can be easily
computed. The imaginary part of Y: (Im(Yc)) depends on the magnitude
and variation of cvflv in the whole frequency range. It is zero if
cvflv is constant or is approximately constant, and is small and it
can be frequently neglected.

Because reflections do not contribute, ribs, inhomogeneities, loads
and supports have no effect on the "geometric mean line response" of
the vibrator, provided they are a few bending wave lengths away from
the driver and receiver. If on the other hand such discontinuities are
close to driver or receiver, their response has to be added to the
amplitude of the characteristic wave that is generated at the driver.
The predictions for the driving point velocity usually agree within
1 2 dB with the experimental results. The theory also applies to
shells and more complex vibrators, where the displacement is
described by a vector variable.

The dynamic behavior of a vibrator can also.be described by a circuit
of a finite or infinite number of simple series-resonant circuits in
parallel, driven by the sum of the forces -that are applied to it. The
parameters of these circuits (1) are the point mode masses M‘J the
point mode compliances Kv.= l/mvznv and the point mode resistances RV.

ilf damping is great. negative elements mustbe included in some of the
circuits. Network theory is applicable and all the theorems derived
in circuit theory apply also to complex vibrators.

The behavior of a vibrator can frequently be approximated with a

high degree of accuracy byvtonsidering only the contributions of a
small nmnber of mdes. For instance if a vibrator is not heavily
damped so that its resonance peaks are separated, a two mode circuit

describes peaks and minima. The resonance peaks (5») res then are
determined by the contributions of single nodes:

- (Ev)rea " fmv v

:1 viii

     



  
1983 RAYIEIGH MEDAL LECTURE

_—_—-——————-—-—

where f is the total driving force,

2 uRv = nwv Hv/m nmvHv

is the "point mode resistance and n is the loss factor. At the anti-

resonance minima (Y=Yanti) the imaginary part of the modal contributions

cancel, and the real parts survive, but their contributions decrease

drastically with their frequency difference from the modal resonance

frequencies. Thus, only the two modes whose resonance frequencies are

next to the frequency of the force need to be considered.

The height of the resonance peaks (Yres) and the magnitude of the

antiresonance mininua (Yanti) can be obtained by standard computations;

the result is
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B is defined as the peak factor. If the density of the resonances is

constant, and we add the contributions of all made pairs. we obtain

the exact solution
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Thus, the second mode. pair contributes only 5.51 to the characteristic

admittance, the third ma'de peir only 31.

The equivalent two-mode circuit gives insight into the variations of

the response curve of a vibrator with frequency and it helps to design

vibrators with a prescribed frequency response curve.

Increasing the damping beyond cv/ms - 5 decreases the' resonance peaks

and increases the urinima. More modal contributions then have to be

added up. If the frequency' is sufficiently high so that m/ev.» lI

then the sumations for the resonance peaks and for the antiresonance

minima leads to similar results as those given above, except for a

decrease in the peak factor B. For instance. for tv/mB= 2. B -> 1.52,

for ev/mn = l, B —> 1.09.
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The mean value theory can be extended also for transfer admittancesu);
when the receiver is not coincident with the driver. - ' 1

Vibrators with loads. inhomogeneities; ribs and other discontinuities
are best described in terms of the mode functions of the unloaded, '
homogeneous vibrator. Each mode fmction of the discontinuous vibrator
then corresponds to a sum of mode function of the homogeneous vibrators: i
the loads and discontinuities couple the mde functions of the ‘
corresponding unloaded vibrator. For instance, if a simple beam is
suspended at its ends and excited at the center, each of its mode
functions is made up by the mode functions of the free-free, supported
-supported. and because of dissymetries of the free-supported beam.
Coupling by. the boundary condit-ions is particularly simple, and does
not destroy or change the resonance frequencies of the three different
types of .modes; they all show up inthe frequency response of the
suspended beam by their resonance peaks.

A load generates a point force which always has a considerable effect
on the driving point velocity if it is located at the driver. For
instance, if a mass of 1/100 of the vibrator mass is at the center ,of
a circular plate, the vibrator admittance may decrease by 100 dB as
the frequency reaches a value of about 10 times the fundamental
resonance frequency. .But its effect is hardly noticeable if it is a
few bending wave length away from the driver. The load increases
slightly the damping because it excites modes that do not contribute
to the driving point velocity. Suspensions and supports lead to
particularly strong nude coupling. They may generate forces of the
same magnitude as the driver. of all supports tested, soft rubber foam
was best. suited for vibration measurements. Welds on shells reduce
the vibration awlitude considerably, if they coincide with the
driver. But if the weld is remote from the driver. reflections
no longer contribute to the geometric mam-and the weld'has only
a small effect on the "'mean value " response.

The mean value theory is also excellently suited to deal with ribbed
shells and more complex types of vibrators. The practical
computations are always very simple, and agree well with the
experimental result usually within 1 2 dB with the theory.

The transients of a coupled vibrator are dealt with by compounding the
modal transients, and in simple cases. by adding them up with the aid
of the Wattson transformation.. In such amputations, the rigid body
velocity (the zero order made) is usually of great importance.

For rods, transducers and similar one-dimensional vibrators. the
transients repeat periodically _with the fundamental period T of the
vibrator. except for the effect of the rigid body motion and the
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damping. This periodicity with '1' sometimes leads to sharp minims in

the displacement time curve, as if the system was strongly non-linear.

At a resonance. energy is fed into the vibrator with optimum phase and

the motion builds up to a large value, off resonance the vibrator

impedance is dominantly reaoine, and the transient amplitude is not

much greater than the characteristic wave that is continuously

generated at the driver and travels towards the boundaries of the

vibrator; the duration of the transients then is not much greater than

fundamental period of the vibrator.

When a vibrator is excited by a frequency modulated pulse and damping

is small the switching on and switching off transients can be made ta'

cancel each other, and the generated pulse becomes a replica of the

applied forcing pulse. But if'damping is increased, cancelling out is

no longer possible, and the transient becomes much longer. Thus.

contrary to the expectations increasing the damping may increase the

transients.

In room acoustics. the reflections represent the transients. Parallel

walls generate periodic sequences of reflections. ln contrast,

.oblique walls broaden the reflection and spread them out. Because

the ear also responds to the envelope of a sound phenomenon, parallel

walls lead to a harsh sound impressions, and oblique walls usually

lead to a smooth and agreeable room acoustics. '
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