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1 . INTRODUCTION

This paper deals with the excitation of trusses of beams with harmonic forces or displacements at nodes:efforts and displacements are measured at the same or the other nodes; two kinds of frequency transfer
functionsare used : the input admittance : Ya = . the transmissibility : Tij = = |1_2|

t l J
Each beam is described with the use of these two basic functions; one may write the stiffness matrix of thebeam 1 with these functions:

. Y" Y"T
K1 = J‘”[ J t3lTy-i yAt

,
ansses are described with the matrix stiffness assembly method: the matrix K is built of the individual K]stiffness matrix ofcaeh beam I3l: K |q = |F MI
The aim ofsmoolhing analysis is the calculus ofa mean transfer function with few frequency points. Oneneeds to have less variability in the transfer function according to the frequency mean used. Giratd [l]
calculates basic smoothed functions for the input admittance Y(f). the longitudinally Tx(f) and the fiexural
Ty(f) vibrating beam with the use of asymptotic com ponment of exact functions at high frequencies:
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4cm
Gimrd uses these basic simple functions with the stiffness assembly method to calculate transfer functions ofthe truss; with the assumption that non-diagonal stiffnesses vanishes from diagonal stiffnesses. formulas forthe assembly are derived from the stiffness assembly matrix l4l:

Vii =1“ 2 “ii KiPl Kr'ipr KI’ItI’n KPnj '3'
direct strunural paths

The sum is made Over the direct structural paths of the truss: a direct structural path is a line made ofbeamswhich link successive nodes: a direct structural path never takes a node which has been already used. Twoquestions can be asked : Which mean is convenient with the asymptotic concept of Girard's results ? What isthe meaning of the direct structural paths in the formula l4| ? Skudnyk gives an idea for the first question: heshaws [2] that the characteristic admittance. which is equal to the smoothed input admittance lot is thegeometric mean ofthe maxima and the minimu ofthe exact input admittance in the case ofa rod excited inlongitudinal motion. 1! is shown [3] that equations l5.6.7l are based upon the same concept: waves in semi-
inl'tnite slrLICturcs; in this paper, equation BI is shown to be very closed to the geometric mean of the exacttransfer function; the extension of this result to flexural waves in beam is also calculated. A pan of thesecond question has been studied in reference [3]: it is seen that waves in semi-infinite media are enough todemonstrate formula I7l; in this paper. the meaning ofthe direct paths concept is shawn with regard to loopstructural paths thanks to the formalism of gniph flow. .

 

73m: 2 exp film-L exp - 2 with c(f) the phase velocity offlexural waves. 17'
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2. FREQUENCY SMOOTHING, GEOMETRlC MEAN AND CEPSTRAL ANALYSIS

 

2. 1 . Basic theory
Lets assume S(f) being a complex frequency transfer function described by its magnitude andits phase; one

may calculate its time representation s¢(t) by the use of the cepstra] technique:

+w+.,.,
5cm = J. logIS(f)] expj21tl’t df + if [qtm 2km] eitijan or J9,

.oo .aa

Left part of expression |9| is the real pan of sc(t) and is called the energy cepstra; the right part is the

imaginary part of Sc(l) and is calculated from a definition of the continuous phase [4]; the energy cepstra is

used in the following; its main properties are related to the logarithm: a convolution of two time signals,

transformed into a product in the frequency domain. becomes a sum in the cepstra: the logarithm puts the
stress on low amplitude values rather than on high amplitude values; the ccpsu'a of transmissibility diverges;

with the equation ISI. we have I110] {a w 0 so. logl'lim - w and equation I9|

  

f—)oc

diverges; direct and inverse numerical Fou ricr transforms are numerically calculated over the same complete

sample of points. Cepstral analysis has been used in the characterization of acoustical reflexion coefficients

of walls [5]: it has also been recently used for the reduce of variability of repetitive measurements and

deconvolution of excitation [6]. Numerical results show the filtering of the cepstra in order to smooth

frequency transfer functions.

Numerical results

:5»?
Fig. l : Characteristics of the beam: Young's modulus E=2.IE¢l0 N/m2. shear modulus G=7.7E+ll N/mz, bending

stiffness El=656 N.rn2. shear coefficient for a circular section y=l.2. structural damping n=0.04, volumic mass

p=7.8E+3 Kg/m3, length L=l m, section o=0t001 m3.

2.2.

Analytical calculus have been developpcd for the longitudinally vibrating rod [7]; numerical results of the

uansrnissibility are l’cpresenlcd on figure 1 for the longitudinally and flexural vibrating beam. 'nteir cepstra

are represented respectively on figures 2 and 3.
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Fig. 2 : Energy cepstra of the longitudinally vibrating rod.
mm (s)
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amplitude |

     
ttust I limit I mm I I I . time (s)

Fig, 3 : Energy cepstra of the flexural vibrating beam.

in order to put the focus on the remainder of the eepstra, the low time amplitude is tntncated; zero time order
tends to infinity as the frequency wind0w grows (for cepstra response ofthc transmissihility diverges).
Common interesting characteristics appear in figures 2 and 3: first. two time domains are revealed: in figure2, low time amplitudes decrease quickly and alternative periodically spaced picks appear. in figure 3, thesame componment is observed. although medium time amplitudes are not periodically spaced; a good time
criteria [min to pan these two domains is given by relation involving the length and the phase velocity of the
beam; in figure 2. (min takes the value: imin = 2%. In figure 3,1min is calculated with the asymptotic phase
velocity of shear waves (the fiexural waves in the beam are described with the rotary inertia and shear

corrections [8]): [min = 26L with c_= “"1 em = (g. t These criteria are shown on figures 2 and 3: they
°- fa“ 7P

give important infon'nations for cepstral filtering and its interpretation Then. the cepsua of figures 2 and 3 is
filctered in order to calculate frequency smoothed transfer functions; the first filter used is a rectangular one:
ils componmcnt is chosen in order to keep the low time domain and to eliminate the remaining time
components; so, in the case of longitudinally vibrating rod (equation ISI and figure 2). the filter has the     
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Fig. 4 : Frequency smoothing by rectangular filtering of the cepstra for the longitudinally vibrating rod.

   

Figure 4 shows th frequency effect of the filtering ofthe cepstra compared to the exact transfer function ISI;
one can see that keeping the low time components of the ccpstra smooths the exact uansfer function over a
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large frequency domain. Figure 5 shows the same results for the llexuml vibrating beam for which the filter

I i if |l|< at
has the following characteristics: Rt) =

‘0 if ItI> CL;

modulus I.t
(log. scale) ‘-7
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Fig. 5 : Frequency smoothing by rectangular filtering of the ccpstra for the flexural vibrating rod.

   

Again. low time components are enough for a large frequency domain smoothing. The next filter used is a

sinus cardinal filter. its interest consiSLs in the fact that a sinus cardinal filter inthe time domain conesponds

to a slipping window in the frequency domain: if a sinus cardinal filter is chosen such as its zero values

coincides with the periodically alternative picks of figure 2. tlte filter takes the following expression :

sinm [0 for|f|>z¢t
timedomain:F(t)=—2J-— :l'r uential domain-fl = I10

» mu m D \ZLforll'k—L
2L C 4L
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Fig. 6 : Frequency smoothing by sinus cardinal filtering of the eepsua for the longitudinally vibrating rod.

The result of this filtering is shown on figure 6; this result is also a quite good smoothing of the exact
frequency function; although it is worse than the use of the recumgular filtering. it gives a direct link to the
geometric mean: the filtering of the cepstra is expressed with the equation nor:

+un [+£—

log[§(fl) =1 sdt)fit) cxp-jantdl =J' bglfifllfif—F)df=z-g= ‘L log|Slf‘l| of
on ._‘3_
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It is shown in the appendix that equation II it is the integral form of me geometric mean. The frequency
smoorhing shown on figure 6 for the longitudinally vibrating rod is a geometric mean of the exact transfer
function through the integral transform It It. The sarrte kind of filter is used for the flexural vibrating beam:

w c
sin— ~ 10 for|f|>l

time domain : PU) = : frequential domain : F(f) = 4 L
can

Ar r _
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Fig. 7 : Frequency smoothing by sinus cardinal filtering of the cepstra for the flexural vibrating rodt

Results are shewn on figure 7: although the aim of this filtering is different from the longitudinally vibrating
rod case. the smoothed frequency function keeps its major properties in the medium and high frequency
range. These results are now interpreted,

2.3. Interpretations and conclusions
The cepstta analysis ofthe u-ansfer function tells about its structure; it is shown that low time filtering of the
cepstral components is equivalent to asymptotic analysis and to propagation in a semi infinite medium; thus,
the remaining information of the transfer function and of the cepstra only concerns the modal componemenL
The term 2M, which is the length of the integral window in the geometric mean expression (see the
appendix). is equal to the modal separation (the inverse ofthc modal density) in the case of the longitudinally
vibrating rod; this value is connected to the return time of a wave in the medium; it is shown that Girard's
frequency smootth transfer function is similar to the geometric mean in a slipping frequency window for

the uansrnissibilily. Ccpstral analysis is a mean to transform transfer functions of a finite system into transfer
functions of the equivalent semi infinite system in connection with the modal density ofthe finite system.
With Skudtzyk's work about geometric mean of the input admittance. one may show that the frequency
uansfer function smoothed by the asymptotic concept is the geometric mean of the exact frequency function.

Frequency smoothing is a deconvolution operator: one may expect to smooth experimental results by the use
of the cepstral analysis and adequate filters such as the rectangular one (or the more convenient Hanning
window). The main problem is to get enough information from low frequencies up to high frequencies: this
implies high frequency sampling and great number of samples. Another problem is the high sensibility of the
cepstral tools to noise effects.

3. FREQUENCY SMOOTHING, STRUCTURAL PATHS AND FLOW GRAPH

3.]. Basic theory 19]
One has to calculate the inverse of the stiffness matrix assembly Hi to solve the problem of the tntss. Lets
transfonne this relation into a more convenient one in the flow graph theory: K lq - IF = |N IlZi

where N is a vector of null variables. The flow graph theory describes each equation of this matrix relation
with nodes and branches; one node corresponds to one variable: one branch links two variables through an
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oriented arrow according to the relation between these variables One of these equations is associated with its

graphllowzkmq,+.,.+K,,,,.q,.-F,~,,;NI11 ' H3!

1/»:*:.K%
‘11 c12 """ ' Qn mi" Fm.t Nm

These nodes are defined in the following way: qr. , qn are test nodes; Fm are source nodes that are the

input of the graph flow: the gain is the value taken by the test node with reference to the source node. The

following definitions of nodes and branches is added to complete this description: chain nodes suppon one

convergent and one divergent branch: 3 loop is only composed of chain nodes: a direct path is composed of

one source node. chain nodes and one test node. A transfer graph is derived from the last representation: for

each node. one of its branches is invened; many transfer graphcs may be written from the last representation:

the one which imposethe nodes qi to be test nodes. rhc nodes Fj to be source nodes is kept in the calculus of

the admittance in. The gain of a test node with regard to a source node is calculated by the use of Mason's

formula: [9]

Z(-l)l‘"1'n
Yij- =jut—n— "4|

1 + {(4 M r?“

where: I}. is the product of all the loop gains and the direct path gain of the hi“:me chain graph. Tom is the

product of all the loop gains inside the mitm" chain graph of the homogeneous transfer graph (when: all

source nodes have beensuppmssed). Ln is the number of loops of I'm L"I is the number of loops of Tom.

Mason's formula may be read in the following way: the gain is obtained by the product of transfer values of

the branches that link successive nodes of the direct path and the loop. The numerator is calculated by the

sum of the direct paths weighted by the value of the gain of the loop; the only contribution to the denominator

is given by the loops of the homogeneous transfer graph. So. the stress is put on the direct paths and the

loop contributions according to Girard's formula ISI; the next paragraph develops an application.

 
3.2. Application

q r 2 3 ‘ F
<—qfil<—

figure 8 : truss made of colincar rods longitudinally excited.

Figure 8 shows the example: it is a truss composed of four nodes and colinear rods excited at node 4 by a

longitudinal cffon; node I is the test node in the calculus of the transfer admitlancezYM =jcoql lFa. The stiffness

assembly matrix I4I transformed into the more convenient form |l2| takes the following value:

anI + anz + + KMq‘1 - F, = N1

Kzrqr + Kzzqz + ana + - F2 = N2 rrsr

‘ Kazqz + K33‘l3 + K34qu - F3 = N3
K41q1+ +K43q3+Kuqa -Fa=N4

Every equation ofthe matrix system llSI is described by a graph flow like that of equation ll3l. The transfer

graph is derived from the graph flow of the matrix system IISI by the consideration of the nodes ql oz q3 q4

as test nodes and F1 F2 F3 F4 as source nodes: the stress is also put on the input node F4 and on the

response node q r . The deduced transfer graph is represented:

524
Proc.l,O.A. Vol 15 Part 3 (1993)

 



 

Prmeedlngs of the Institute of Acoustics

FREQUENCY SMOOTHING

Next calculus gives all the components of Mason's formula lldl. The calculus'of the numerator is done with
two direct padres [F4 - N4 — q4 - N3 - q3 - N2 - qz -Nr - q” and (F4 - N4 - qa - N1 - q]) with respective
gains: K'l'l K n K'Z‘Z K23 K35 K34 K24 and K1], K ,4 K35; only the last one is associated to a loop (N2
- q2 - N3 - q3) whose gain is K23 K35 K32 K15; the denominateur is calculated with the homogeneous
transfer graph (the source node F4 and is branches are suppressed); only loops contribute to the
denominator. the are located and athered in the follow-in table:

 

  

 

   

    

   

  

     

  
  

lNr-qr-Nz-qzl
{Ni-Cir-Na-ml
lNz~q2-N3-q3l
(Na-qs-Na-qal

lNr-qr-Nz-qz-Nz-qs-N4-q4l
lNr-qt-N4-q4-N3-q3-N2~q2l

  
   

 

  

 

   

K31. K14 K114

K'z'z K23 '9'; K32
Ki}: K34 K234 K43

Ka'. K12 K22 K23 K55 K34 Kr}, Kn
K" K” K‘ K43 K '1  
  

According to the definition of Mason's formula, the transfer admittance is calculated:

Ki'r K'M K21": (-1 + K23 K's's K32 K'2'2) -Ki‘r Kr: K'z'z K73 K35 K34 K24
I - 141’ + F?

with:r‘l) = K‘l‘l K12 K'zlz K2] + K'l'] K14 K2114 K41
+ K313 K34 K134 K43 + Ki'r Km K34 K43 K313 K32 K25 K21
+ K511 K23 K55 Kn + K',‘, K]; K212 K23 K'3'3 K34 K314 K4;

1'0: = Ki'r Kr2 K'z'; Kzr K35 K34 K24 K43
+ K‘r'r Kra K24 K41 K'z'z K23 K's]: K32

Y” =jut

 

l16|

3.3. lnterprelatians and conclusions

The result |16| is compared to Girard's smoothed equation l8l: Y—14= jm=KL‘: +yam
Krr K44 KtrK22K33Ku

lfall the loops in the equation llol are suppressed thanks to Lhe approximation: K23 K“33 K32 K422 << I.
[‘01 << 1. [‘02 «L then both equations are identical: this approximation is justified at medium and high
frequencies where non diagonal stiffnesses vanishe from diagonal stiffnesses in the stiffness matrix 14L We
may now interpretc the expression "direct structural path” and "loop" in Girard's result l8|: the direct
structural path is a flow graph path which links a source node (that is the excitation degree of freedom) to thetest node (that is the response degree of freedom)‘ It characterires the propagation of an "open" informationthrough the free degrees of freedom of the truss; on the other side. loops characterizes the "closed"
information which causes the modal response of the truss.
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4. CONCLUSIONS AND EXTENDS
By the use oftwo different analysis, the demonstration of two imponant properties for frequency smoothing

has been given: first. it has been shown that geomeu-ic mean is the combined use of cepstnlanalysis and low

time filtering (according to the modal density) to deconvolute the semi infinite part of the frequency transfer

funCtion: then. by the use of flow graph analysis. the definition of the concepts of direct structural patlt and

loop is shown to be connected to propagation conce 15; these two studies are self consistent with the

hypotheses of semi inifinitc systems at high frequencres. Work is in progress to experiment the cepstral

analysis in order to get smoothed transfer function from mesured transfer function. This work is supported

by the D.R.E.T. and INTESPACE (C.N.E.S.); acknowledgments to M. Aquilina for fntcluous discussions.

5 . APPENDIX

The geometric mean fiif) of a discrclisation of N frequency points of the exact transfer function H0) is

defined by:
- - N

Fm: “1‘ finif): 1"“ 4/ n +2£arll
N —-)°° ' 'N —)w k=1

The discrete geometric mean may be written with a logarithmic scale:

_ ' N
log[H(f)]= “m i }; logl H(r+zk.ar)|

N k=l N
N —>=°

The sum of the last expression is transformed thanks to the Riemann integral; with a linear scale. the

integrated vcomctric mean takes the following expression in which the parameter of is interpreted :

[MI

fim=cxp J—I logIH(|")|di‘
2M car

‘
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