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1. INTRODUCTION

This paper deals with the excitation of trusses of beams with harmonic forées or displacements at nodes;
efforts and displacements are measured at the same or the other nodes: two kinds of frequency transfer
functionsare used : the input admiltance : Yy = ;-J- + the ransmissibility : Tij= ;l- = :—' 11,21

i i
Each beam is described with the use of these 1wo basic functions; onc may write the stiffness matrix of the
beam 1 with these functions:

Yl YT
Ki=ja J Bl
w.] Y.] _
Trusses are described with the matrix stiffness assembly method: the matrix K is built of the individual K)
stiffness matrix of each beam 131; K lg=IF l

The aim of smoothing analysis is the calcutus of 2 mean transfer function with few frequency points, One
needs to have less variability in the transfer function according 10 the frequency mean used. Girard [1]
calculates basic smoothed functions for the input admiutance Y{f). the longiwdinally T(P and the flexural
Ty(f) vibrating beam with the use of asympiolic componment of exact functions at high frequencies:

; —_— = . 2xfL
Tl = ”005(1%&‘-{1-1%)] [>> Tuf)=2 exp 'J% exp - _ZC_T! (5l
f =—L_-cmg(21|?-|1= 1-'1,] o> Wifj=—1_
= e R [ 2 0= e o
= . 2rfln )
Ty(f)=2 exp .del') cXp - 3D with {f) the phase velocily of flexural waves. 7

Girard wses these basic simple functions with the stiffness assembly method 10 calculate transfer functions of
the truss; with the assumption that non-diagonal stiffnesses vanishes from diagonal stiffnesses, formulas for
the assembly arc derived [rom the stiffness assembly matrix 141:
Yij =jo > Kil Kipt Kplpy -« Kihp, Kpn; K L

direct structure! paths
The sum is made over the direct structural paths of the truss: a direct structural path is a line made of beams
which link successive nodes: a direct struciural path never takes a node which has been already used, Two
questions can be asked : Which mean is convenicnt with the asympiotic concept of Girard's resuits ? What is
the meaning of the direct structural paths in the formula 141 7 Skudrzyk gives an idea for the first question: he
shows [2) that the characteristic admillance, which is cqual 10 the smoothed input adminance 16l is the
geometric mean of the maxima and the minima of the exact input admiutance in the case of a rod excited in
longitudinal motion. It is shown [3] that equations 15,6,7! are basced upon the same concept: waves in semi-
infinite structures; in this paper, equation 151 is shown Lo be very closed to the geometric mean of the exact
transfer function; the extension of this result 1o fexural waves in beam is also calculated. A part of the
second question has becn studicd in reference [3): it is seen thar waves in Semi-infinite media are enpugh to
demonstrate formula 171; in this paper, the meaning of the direet paths concept is shown with regard 10 loop
struciural paths thanks 10 the formalism of graph flow. .
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2. FREQUENCY SMOOTHING, GEOMETRIC MEAN AND CEPSTRAL ANALYSIS

2.1. Basic theory
Lets assume S(f) being a complex frequency Lransfer function described by its magnitude and its phase; cne
may calculate its lime representation sg(1) by the use of the cepstral technique:

o0

-+ oo
s = [ log| S(M)] expj2nft df + jj [qm+ Zku] expj2rfi df ]

- =00

Lefi pant of expression I9 is the real part of 5c(1) and is ¢alled the energy cepstra; the right pant is the
imaginary part of sc(t} and is calculated from a definition of the continuous phase [4]; the energy cepstra is
used in the following; its main properties are related 10 the logarithm: a convolution of two time signals,
transformed into a product in the frequency domain, becomes a sum in the cepstra; the logarithm puts the
stress on Jow amplitude values rather than on high amplitude values; the cepstra of transmissibility diverges;
with the equation 131, we have |T(f)} PR 0 so, logj T{N)| f e T and equation 19}

diverges; direct and inverse numerical Fourier transforms are numerically calculaled over the same complete
sample of points. Cepstral analysis has been used in the characierization of acousticat reflexion coefficients
of walls [5]; it has also been recently used for the reduce of variability of repetitive measurements and
deconvolution of excilation [6]. Numecrical results show the filtering of the cepstra in order 10 smooth
frequency transfet functions.

2.2. Numerical resulis

he ] EEAR

Fig. 1 : Characteristics of the beam: Young's modulus E=2.1E+10 N/m2, shear modulus G=7.7E+11 N/m2, bending |
stiffness E1=656 N.m?2, shear cocfficicnt for a circular section y=1.2, structural damping n=0.04, volumic mass ‘
p=T.8E+3 Kg/m?, length L=1 m, section 0=0.001 m3. {

|

|

Analytical calculus have been developped for the longitudinally vibrating rod [7); numerical results of the
wransmissibility are represented on figure 1 for the Jongiludinally and flexural vibrating beam. Their cepstra
are represcnted respectively on figures 2 and 3,
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Fig. 2 : Energy cepsira of the longiwdinally vibrating rod.
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Fig. 3 : Energy cepsura of the flexural vibrating beam.

Inorder to put the focus on the remainder of the cepstra, the low time amplitude is Lruncated; zcro time order
tends 1o infinity as the frequency window grows (for cepsira response of the transmissibility diverges),
Common interesting characleristics appear in figures 2 and 3; first, two time domains are revealed: in figure
2, low time amplitudcs decrease quickly and altemalive periodically spaced picks appear; in figure 3, the
same componment is abserved, although medium time amplitudes are not periodically spaced; a good time
critera tmin 10 pan these two domains is given by relation involving the lengih and the phase velocity of the

beam; in figure 2, tyip 2kes the value: tmin = "LE. In figure 3, ymin is calcukaled with the asympiotic phase
velocity of shear waves (the flexural waves in the beam are described with the rotary incrtia and shear

corrections {8]): i, = 2EL. with ¢_= lim df)=, /G . These criteria are shown on figures 2 and 3: they
o P

give importan! informations for cepstral filiering and its interpretation. Then, the cepstra of figures 2 and 3 is
fileicred in order 1o calculate frequency smoothed transfer funciions: the first filler used is a reclangular one;
its comportment is chosen in order 1o keep the Jow time domain and to climinate the remaining (ime
components; 50, in the case of longitudinally vibrating rod (cquation 151 and figure 2}, the filier has the

e
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Fig. 4 : Frequency smoothing by reclangular filiering of the cepstra for the longitudinally vibrating rod.

Figurc 4 shows the frequency effect of the filtering of the cepstra compared 10 the exact transfer function I5;
one can sce tha keeping the low time components of the cepsira smooths the exact transfer function over a
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large frequency domain, Figure 5 shows the same results for the flexural vibrating beam for which the filter

1ir |q<&
has the following characteristics: Rt] = L
0 if [t]>
o if Iu>
I'I'mdllll.ls ‘lh bl ande LEARL] T T &« 713117 T T rerrnr LR RELL T 1 T Trarer L LIRS
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Fig. 5 : Frequency smoothing by rectangular filiering of the cepstra for the flexural vibrating rod.

Again, iow time components are cnough for a large frequency domain smoothing. The next filier used is a
sinus cardinal filier: ils interest consists in the fact that a sinus cardinal filier in the lime domain corresponds
to a slipping window in the frequency domain: if @ sinus cardinal filter is chosen such as its zero values
coincides with the periodically aliemative picks of figure 2. the filier takes the following expression :

sin BLL _ [0 forlfj> &
time domain ; Ft)= —2k ; froquential domain : F{f)= aL na
- ECL \lLforll‘k—L
2L < 4L
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Fig. 6 : Frequency smoothing by sinus cardinal filtcring of the cepstra for the longitudinally vibrating rod.

The result of this fillering is shown on figurc 6; this result is also a quile good smoothing of the exact
frequency function; although it is worse than the use of the rectangular filiering, it gives 2 direct link to the
geometric mean; the fillering of the cepstra is expressed wilh the equalion QL

+ 0o Fey far-£—
loglS(N) = [ sdU AL cxp-j2nfidi = I mglsm|ﬁr-r}dr=1}a 4L 10p]8ifY)] dF
e - o ni
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It is shown in the appendix that cquation 1111 js the imegral form of the gepmetric mean. The frequency
smoothing shown on figure 6 for the longiwdinally vibrating rod is a geometric mean of the exact transfer
function through the integral transform 1111, The same kind of filter is used for the flexural vibrating beam:
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Fig. 7 : Frequency smoothing by sinus cardinal fillering of the cepsura for the fiexural vibraling rod,

i

Results arc shown on figure 7: although the aim of this filtering is different from the longitudinally vibrating
rod case, the smoothed frequency function keeps its major properties in the medium and high frequency
range. These results are now inlerpreted. .

2.3. Interpretations and conclusions

The cepstra analysis of the transfer function tclls about its structure; it is shown that low time filtering of the
cepsiral components is cquivalent 10 asymptolic analysis and 1o propagation in a semi infinite medium,; thus,
the remaining information of the transfer function and of the cepstra only concemns the modal comporiement.
The term 2A[, which is the length of -the intcgral window in the geometric mean expression (see the
appendix), is equal 10 the modal separation (the inverse of the modal density) in the case of the longitudinally
vibrating rod; this value is connected to the rewm time of a wave in the medium; it is shown that Girard's
frequency smoothed transfer function is similar 1o the geomeltric mean in a slipping frequency window for
the transmissibility. Cepstral analysis is a mean 10 transform wransfer functions of z finite system into transfer
functions of the cquivalenl scmi infinite sysiem in connection with the modal density of the finite system,
With Skudrzyk's work about geometric mean of the input admittance, one may show that the frequency
transfer function smoothed by the asymplotic concept is the geometric mean of the exact frequency function.
Frequency smoothing is a dcconvolulion operator: onc may cxpect to smooth experimental results by the use
of the cepstral analysis and adequate fillers such as the rectangular one (or the more convenient Hanning
window). The main problem is 10 get enough infermation from low frequencies up Lo high frequencies: this
implies high frequency sampling and great number of samples. Another problem is the high sensibility of the
cepstral 0ol to naisc cffects.

3. FREQUENCY SMOOTHING, STRUCTURAL PATHS AND FLOW GRAPH

3.1. Rasic theory 19]

One has 1o calculate the inverse of the stiffness matrix asscmbly B to solve the problem of the truss. Lets
transforme this relalion imo 2 more convenicnt one in the Now graph theory: Kig -1F = [N n2
where N is a vector of null variables, The flow graph theory describes each cquation of 1his mairix relation
with nodes and branches; onc node corresponds 10 one variable: onc branch links two variables through an
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oricnted armow according to the relation between these variables. One of these equations is associaled with its

graph Now: K1+ + Knn - Fm ?Nm . n3
q} q2 » w = = w w & = qn m.n Fm 1 Nm

These nodes are defined in the following way: q1. ... , gn are test nodes; Fyy are source nodes that are the
input of the graph flow; the pain is the value taken by the test node with reference to the source node. The
following definitions of nodes and branches is added 10 complete this description: chain nodes support one
convergent and one divergent branch; a loop is only composed of chain nodes; a direct path is composed of
one source node, chain nodes and one test node. A transfer graph is derived from the last representation: for
cach node, one of its branches is inveried; many transfer graphcs may be written from the last representation:
the one which impose the nodes gi 10 be test nodes, the nodes Fj 1o be source nodes is kept in the calculus of
the admittance Yj;. The gain of a test node with regard to a source node is calculated by the use of Mason's
formula; (9]
N s Jon T

ij =1 14l

1 4 T(-1)kmIm
m

where: Ty is the product of all the loop gains and the dircct path gain of the nitMe chain graph, T, is the
product of all the loop gains inside thc mitMe chain graph of the homogeneous transfer graph (where all
source nodes have been suppressed), Ly, is the number of loops of T, Ly is the number of loops of T0;,.
Mason's formula may be read in the following way: the gain is obtained by the product of wransfer values of
the branches that link successive nodes of (he direct path and the loop. The numeraior is calculated by the
sum of the direct paths weighied by the valuc of the gain of the loop; the only contribution to the denominator
is given by the loops of the homogencous transfer graph. So, the stress is put on the direct paths and the
loop comributions according Lo Girard's formula I8 the next paragraph develops an application.

3.2. Application
q 1 2 3 4 £

Y —— s P -—
figure 8 : truss made of colinear rods longitudinally exciled,

Figure B shows the example: it is & russ composed of four nodes and colinear rods excited at node 4 by a
Jongitudinal cffort: node | is the test node in the calculus of the transfer admistance: Y4 = j0 0, { Fa. The stiffness

asscmbly matrix 141 transformed into the more convenient form 1121 wakes the following value:

Kngy + Kizgp + + Kijaa, - Fy = Ny

Karqp + K297 + Kn3qs + ) = N2 5t
Ka2qy + Kizqy + K3aqy - F3 = Na

Kaqq + + Kazqs + Kaaqy -Fg =Ny

Every equation of the matrix system 1151 is described by a graph flow like that of equation [131. The transfer
graph is derived from the graph low of the matrix sysiem 1151 by the consideration of the nodes 4 92 Q3 g4
as test nodes and Fy Fp F3 F4 as source nodes; the siress is also put an the input node F4 and on the
response node q. The deduced transfer graph is represented:
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-11 Fy -11 F3 1 -11 F2 -IlFl
-1 ; -1 -1
N4 Kad o q4 K N3-K33. q3 KB o Nz-xnl q2 K12 Nl K, ql
‘ K43 ‘ | K32 ‘ | K21
L__ka — F Ix1a

Next calcutus gives all the components of Mason's formula 1141, The calculus of the numerator is done with
two direct pathes (F4-Ng-gq-N3-q3-N2-q2-Nj-q1) and [Fs- Na - G4 - N1 - q1} with respeciive

gains: K} K1z K3 Koz K3h Kas Kgand K7} Kypa Kih; only the last onc s associated (o a loop {N2
- Q2 - N3 - g3} whose gain is K13 K‘3‘3 K3z nglz; the denominateur is calculaied with the homogeneous

transfer graph (the source node F4 and its branches are suppressed); only loops contribule to the
denominalor: they are Jocated and pathered in the following table:

CAIN OF THELGOP
LOOPp

[zl-QI'NTQZ} K]:, Ki2 Ka:2 K2

e rE

2 722 K23 K3z Kaz

{N3-93- Ng-qq) Kih K Ky Kas
{N1-q1-N2-q2-N3-q3-Ng-qq) K3} Ki2 K32 Koz Kib Kas K3y Ko
{N1-81-N4-Q4-N3-q3-N2-qz} Ki) Kis Kiy Ky Kb Kig Kb Ko

According to the definition of Mason's formula, the transfer admittance is catculared:
Kih Kaa Kaly {1+ Kaa K3 K3a Kib) - K3} Kiz Kz Ka3 Kih Kaa Ko
1-1 + 13

Wil.h!]'!l) = K-I.II Kiz K'212 Kay + K'lll Kiq K,q],q Ka)
+ Kyy Kag Ky Ka3 + Ki} Kia Ky Kas K3 Kag Kb Koy
+ K7h Kz3 Ka) Kaz + Ky} Kiz K3 Koy Kib Kag K&y K
Kil K1z Ky Kot Ki Kaa Ky Kas
+ K} Kis Ky Kay K3 Kzs Kih Kag

Yia = jio 116l

2

3.3. Interprelations and conclusions

The result 1161 is compared to Girard's smoothed equation 181 Vg = jo—tel4 _ + jo_K12K23K3q
KinkKaa K11 K22K33Kay
I all the loaps in the equation 1161 are suppresscd thanks to the approximation: K23 K-1 3K K 1n <<,

M << 1,V <<, thep both cquations are idenlical; this approximation is justified at medium and high
[requencics where non diagonal siiffncsses vanishe from diagonal stiffnesses in the stiffness matrix 41, We
may now interpreie the expression “dircel structural path™ and "loop™ in Girard's result I8]; the direct
structural path is a flow graph path which links a source node (that is the excitation degree of freedom) ta the
test node {that is the response degree of freedom). It characterizes the propagation of an “open” information
through the frec degrees of freedom of the truss; on the other side, loops characierizes the “closed”
information which causes the modaj response of the 1russ,
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4, CONCLUSIONS AND EXTENDS
By the use of two different analysis, the demonstration of two imponant properties for frequency smoothing
has been given: first, it has been shown thal geometric mean is the combined use of cepstral analysis and low
time filtlering (according w0 the modal density) to deconvelute the semi infinite pant of the frequency transfer
function; then, by the use of flow graph analysis, the definition of the concepts of direct struciural path and
loop is shown to be connected o propagation concepts; these two studies are self consistent with the
hypotheses of semi inifinite systems at high frequencics. Work is in progress to experiment the cepstral
analysis in order to get smoothed transfer function from mesured wransfer function. This work is supponed
by the D.R.E.T. and INTESPACE (C.N.E.S$.); acknowledgmenis to M. Aquilina for fructuous discussions.

5. APPENDIX
The geometric mean H(N of a discretisation of N frequency points of the exact transfer function H(f) is

defined by:
mas Wmoo=oo  im NN k
H(D o H) N kl;l}‘H{f+2ﬁar)|

The discrele geomelric mean may be writien with a logarithmic scale:
— i N
oo} = "™ L3 g Hfr + 26|
Ny N
N —ee

The sum of the last expression is transformed thanks 10 the Ricmann intggral; with a linear scale, the
ineprated peometric mean wakes the following expression in which the parameter Af is imerpreted

r+af
Hin=ecxp| - log| H(r")| dF
2A1 frar
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