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1. INTRODUCTION
Target tracking and TMA batch algorithms use criterions based on the stafistical likehood of the
measurements obtainad through array processing. The computation of this likehood raquires to
know the measurements disiribution or simply the measurements precision {gaussian case).The
purpose of this paper is to examine some practical problems arising from the use of an "orthogonal

subspace meihod” as array processing. Four methods to evaluate bearing accuracy are presented. -

One of them seems o have some praclical advantages and appears as a theoretical curiousity.

2.CONTEXT
2.1 ASSUMPTIONS, NOTATIONS:
To simplify we assume that the array is a "well sampled” (Shannon) uniform linear array (ULA) (N
sanseors) referenced to mid-point. Targets are in the array far field and propagation is kind enough
so that a target induces at the array a steering veclor of the form:

- N
d,=d(8)= df.8)=[cexp(2ix (n - -—211—) Fsing)],_, n (0)

with f=F d/c normalised frequency, F frequency, d distance beetween two sensors, ¢ sound
velocily, & bearing, i2=-1, cexp(x) = complex exponential function.

We assume that signals are stationnary and we can get an unbiased estimate T (pericdogram) of the

P
interspectral matrix T which is of the form: T =Z S,dd +Wd (1)

I=1
P = number of sources, N = number of sensors, K = number of snapshots used to estimate T

AT =T - T, 1d = identity matrix, 6, {(i=1,...P) = bearings of the P sources, S;= signal to noise ratios
of the P sourcas, d, = d{6), 34= 1ﬁ dede. A, (i=1,.. N} = eigenvalues and normalized eigenvectors

of T in decreasing order. &;, y;(i=1,...,N) = eigenvalues and normalized eigenvectors of T in

N ~ P P
. T 1 1 . . . .
decreasing order, A = —— Z MM = Z —_— , = z yuy {matrix of the signal
N-P LPu i=t Arl ma i=1

-]
-L -~
subspace projector), IT = Id - 1,1 = Y Wil = 0 481 +5%M +.., &I and &1 first and second
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order developpement (in AT) of [T . 20, = Cramer-Rao angle (see [3]). "Tr( )" is the Trace oparator,

"E" is the mathematical expectation, *** indicate transposed-conjugated, """ indicate the nth

2
derivate relative to 6. "a X is a chi-square random law with Q degrees of freedom.

Remark: Assumplions (0) and (1) can be extended (except for the expressions of the Cramer-Rao

P
bound given in the sequel) to the more general case where g has any form and I‘=21i d, ,d; + Ry
i=1

where y; are the powers of the P sources and Ry the known noisa interspectral matrix.

2.2 ARBAY PROCESCSING:

Array processing is often performed by the research of the maximums (or minimums) of a pacular
function 9. In narrow band case this function is depends both on 8 (= bearing) and F (F=frequency). In

wide band case it is a function of 8 and B (B=frequency band). Although the behaviour with F (or B)
can be of great interest for detection and localization, we only consider here the problam of spatial
narrow band localisation. That is: we fix a frequency F (we suppose that all interesling targets are
detectable at the frequency F and that their narrow band spectrums at F are stable). Many array

procassings g(8) can be written:

g(8)=g(8,A)= -:-ige' ;do =Tr(: 89 {2a)(2b) where ; is an estimate of a matrix A.

A
(I) classical beamforming A =T (Il) adaptative beamforming A= T (Ii) goniometer A = r]l

The "asymplctical” expression of g{6) is g{8) = Tr{Aj,) (2¢c)

The bearings Oq {q=1.P} of the P sources are estimated by the arguments of the maximums (I) or

”~

minimums (1) (L11) of 9(8): V g=1,....P 3q= arg(Maxorming(e)  (3)
For a single source (P=1) we have: 8, =arg(Maxormin g(8)) for (I) (II) (III} but in the general case

(P>1) the relation: V g=1,...P 8q= arg{Maxormin g(8)) (4} is only true for (I11).
We introduce here the notation: Aeq=aq- eq

2.3 TRADITIONAL MEASUREMENTS DISTRIBUTIONS:

231 Lew of o

6 is often assumed 1o have a gaussian distribution. We do not give here any theorical justification
but will empirically test this assumption in the pecular considered case.

For (1) {II) {1I1) in the case of a single source, the estimator of 8q reaches asymptotically (that is

when K tends 10 oo.) the Cramer-Rao bound and becomas efficient. That is the reason why one often

Fy a
considers in the general case (P>1): bias( ¢ )=E A9q=0 (5) . o,%:E (Aeq)2= I'ey (6
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That is when needed o, is approximated by the Cramer_Rao (CR) bound for a single source or the
Woodward formula (Cramer-Rac bound with deterministic signal [3]).

93 H 1+NSq

Cramer_Rao bound (random signal) S 'FF':WITS—— (7
q

Because (4) is only true for (1lI), (5) is not true even asymplotically for (1) and (11) in the general
case. Conversely it can be prooved (see [6] and [1]) that ( Iil) verifies (5) asympiotically.

23.2 Law of 0..

g(e) has a distribution which is asymptotically known for (I) and (I1i):

-~ 2 ~ 2
(1): g followsa a2k atanyfxede. (N):1/ go)followsa oY xcon,2 atany fixed 8. ([2])

In the sequel, we will consider ( 1il) and its pecular problems.

2.3.3 Power estimatlon, usual bearing precislon estimation:
Because g(eq) gives for ( I) and { II) the signal to noise ratio Sn| of the source al bearing eq (accurately

in the case of a single source, approximately in general cases. For (I) g(@,)=1+NS,, for ( 1I)

1/g(8,)=1+NS ), g(aq) gives an estimate of the power. So it is not difficult 1o evaluate Sq and so

- 93 ¥ 1+NSq

“epn' {e.g. é';:. 1“ (;(eq)-1) for (1) and Gegr= —————~—). For (Ill) the estimation of Gy

YK NS,

becomes more difficult because ralation bestween Sq and g(eq) is more complicated.

R

3 PECULAR CASE OF (11)
It is assumed that the number of sources is exactly known.

a‘l—wmq

As usual we assume Bq being gaussian and test here this hypothesis with the Kolmogorov test of fit.

Simult:
Conditions of simulation are P=1, N=16 (ULA), {=0.380 , 8, = 5 degrees and various (K,S,).10000

independant measurings have been processed and the test of fit was processed over 250 groups of

40 samples. Mean and variances of 8, are estimated over the 10000 samples.

8,= 0.1 0.1 1.0 1.0
K= 50 500 50 500
Probability ol false rejection (%)= 5% 5% 5% 5%
% of rejection= 4.2% 4.4% 5.6% 5.2%
Simul2:

Conditions of simulation are P=3, N=16 (ULA)}, 1=0.380, 8, = 5, 8, = -5, 83 = -10 degrees, S,=0.1,
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S,=1.0, 8,=1.0, K=500, test only 8, over 10000 measurings (250°40):
Probability of false rejection: 5% , Observed rejection: 5.6%

~
So we can assume B, is following a gaussian law.
L.
3.2 asvmptotical distribution of gfe ):

A second order developpement of g(B) near eq gives the value of its maximum:

(1} 2

o 2 (Tr(&ﬂ ﬁeql)
gleg)= TrdM8e) - 1 (10)

2 Tr(ft 8p, )

In [1] 80 and 3211 have been calculated. So:
gl6.) = Tr(M L AT M 8¢) - —2— (REAL{ Tr(M AT a9 )2 o
gley = TM AT 1 A o) “aqN { Tr{ ndeg d, )} (11)

and;(eq) ~Te(M AT [ AT M 80} {12)

- A 2
In the case of a single source, the law of g(ﬂq) is ———12— L2N-2 (13)
2(-1) K.

Empirically the correlation coefficient between g(eq) and g(eq) is close to 1.

~ A 2
We assume gl q) follows an o X Qlow (Q ~ 2{N-P} ) (14) and tesl this hypothesis (same conditions § 3.1)

Simuli: P=1

S, = 0.1 0.1 1.0 1.0
K= 50 500 50 500
Probability of false rejection (%)= 5% 5% 5% 5%
% of rejection= 5.2% 5.2% 6.8% 6.0%
Q (2(N-P)=30) = 15.1 26.4 20.9 28.4

Simul2: P=3, s1=0.1, K=500
Probability of false rejection: 5% , Observed rejection. 4.8% (Q=21.5) (2(N-P}=26)
33 P imation:
A solution is to estimate S, by means (see [4]) of the formula:
2

- . 2
Sue( 3 1969 4 o, 2laea’ul,,
q= ( ) (8) because:S, ( ; o ) (9)

i=1 ~

Ard

This estimation overestimates the power of the sources, and the evaluation of the CR bound would
be underestimated (see § 3.5).
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3.4 Boari

In {1] Mr Foster gives for (1II) the true variance and bias of the estimate Bq of bearing 8, which
he defines as: var(aq)=E (Asq)z (14) . bias(aq)=E 48, {15)

We observe here that var(aq) is not really a variance which should be defined as:

E (0, El0,)° = varla,) - bias*(e))  (16)

The justification of this definition is that biasvar'’? tends to 0 asymploiically.

P
2,

'1(3.r1]N

lu'd@) 2 (17)

We are only interested in var(eq) which is var(g.) =

9 Kaq

. 12 d
with o=l = 1 do 2 ds- (gﬂ(ei)eﬂq

-~

P
We natice that E Q{Bq) NT Z

lu'dieg) B (18)

=1 (1.-1] N
and so: var(a )=—1—E;(B ) {19)
9T 2(N-P)aq q
Estimali { beari .
Using the previous relations, some estimalors of the variance of bearings var(aq} can be derived:
i, . L T~ [ 0
{i) empirical estimation: vari- ﬁg(em - -L-Eem )»? (20}

{l] indicate a temporal Indice, the number of the saurce is not. Indicated to simplllie nolations.

- L 2" 1 L 3V 1+NS;
{i) CR formula: varZ-L Y ocam - — - y (——,-..)2 @1)
l=1 I=1 'v NS[|]
— g 1 POMA A s
(ii) true values: var3 . -3, =2 lurg(®y) P (22)  derived from (17)
=1 2 (N-P}) a, i=t (l l) N
v
“—~~ 15 1
(iii) true values: vard =—E —_—= g(e ) (23)  derived from ({18}
Lid 2 (NPyoy " _

-

, 1t 1T, W ~
with ap=|| N o gyl dn = (aeﬂfa))eﬂm

Comparison of these estimators: Empirically we test these .estimators over 10000 samples:
Simul1: P=1

g0

Proc.l.O.A. Vol 11 Part 8 (1989)



Proceedings of the Institutue of Acoustics

- ACTUAL BEARING MEASUREMENT ACCURACY OF AN HR METHOD AND ESTIMATION

84= 0.1 0.1 1.0 1.0

K= 50 500 50 500
vari 0.344 0.0288 0.0185 0.00184
var2 0.133 0.0258 0.0178 0.00181
vard 0.141 0.0260 0.0174 0.00181
vard - 0.232 0.0265 0.0176 0.001786
CRbound 0.277 0.0277 0.0181 0.00181
corr(*) 023 1003 O > 0. 0

-~ PN

{*) comalation belween eqmd 9(9.,)
Simul2: P=3, 5130.1, K=500

—— —— —— —

vari-0,0769 var2_-9.p260 Vvar3=0.0624 Vvar4=0.0635 CR bound=0.0277
Exemple: case (P, 8,, K)=(1, 0.1, 50) evolution of the estimates versus number of samples:

%]

" vAR1 e
e T T T T e
o
CR .
iy

yr e VAR:
ab o vaR2

H=I ¥ ‘o -0

FIG. 1

—_—— e

Variances of vari and var4:

— —— 2 varz(e()
It is well known ({5]) that bias{vari)=0 and var(varl ) = T— nd 0 {30)

——— —— ~ 2
It is clear that bias(var4) — 0 and assyming klas(var4)=0 and var4 follpws ae g(8)an aXQ law
—  zyari8g

{Q = 2(N-P) ) one obtains: var{vard) i q

So var{vard) << var{var! ) (we can obsarve it on fig.1)

(with =2(N-P) — 0  (@31)
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Using (30) and (31) we can remark {P=1N=16) that a precision of 10% over var(aq) requires 200

samples for var1 and 20 for vard (If bias(vard)=0).
1.6 Sensitivi ignal_distribution:

-~

These previous simulations and calculations are available if the vectors used to compute T

(periodogram) are independant and follow a gaussian law. A simulation was performed using vectors
which were issued from a DFT of vectors following a uniform law: Conditions are P=1, N=16 (ULA),
{=0.380, @, = 5 degrees, K=100, S,=0.1. 10000 independant measurings have been processed and

the test of fit has been processed over 250 groups of 40 samples. Mean and variances of Eq are
estimated over the 10000 samples.

~

Testing &; gaussian distribution: Probability of false rejection: 5% , Observed rejection: 6.0%

-~ 2
Testing g(8y) aX Q distribution:Probability of false rejaction: 5%, Observed raejaction: 3.2% [0-18.4)

—— ——— ———

vari=0.229 var2=0.137 var3=0.144 vard4-0.225 CR bound=0.277
Exemple: case (P, §,. K)=(1, 0.1, 50) evolutien of the estimates versus the number of samples:

L)
EX 1Y
wan
niy

uw

CR

VAR1
-\,,'_\,:g_l_g.,;,_,.g — e

)

™ ) VAR
’ ViR2
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FIG. 2 LI L U PO RTR R FITR B (N P bon gonssigr sigaal

———— —— o ——

var1 is quite sensible to (e take into account) signa! distribution, while var2, vard, vard seem lo
be the same as in the gaussian case.

E z s g I I :EE Hsl‘matign-

revious simulations and calculations are only valuable if the number of sources is well estimated.
To test the previous results in a case where the number of sources Is overestimated, the following
simulation was performed: P=1,5,=0.1, 8,= S deg., {=0.380, K=500, N=16,P=3,10000 samples.

-~

Testing 8, gaussian distribution: Probability of false rejection: 5% , Observed rejaction: 4.8%
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~ A 2
Testing g(dq) aX Q distribution: Probabllity of false rejection: 5%, Observed rejection:3.2% (@=23.1)

—— ————— ———

vari=0.0324 var2-0.0258 var3=0.0294 var4=0.0299 CR bound=0.0277

”~

CONCLLUSION

var4 is an estimator of var(8,) which is asymplotically unbiaised and has a smaller varlance

———

than the guasl efticiant emplrical varlance estimator varl () so that one can use

only a few measurements to compute it with good precision. It presenis an other advantage: it does
———

not need an estimate of the power as the estimator using the Cramer-Rao bound (var2) and above
all it can be used even In the general case of many sources.wvar4 seems 1o be a befler

——

estimator than var3 which is also derivated from the express;on of actual bearlng precision but

does not really exploit the relation or possible correlation between G and g(Bq) Drawback is the

relative insensibility to non gaussian signal when var1 shows that non gaussian hypothesis can

~

cbviously modify var(8g).
i L]
{*) Ihis is not & contradiction, becausavard uses an other variable than oq.

Acknowledgement. Autor thanks GERDSM for its tinancial support.

BEFERENCES:

[1] Ph. Foster, "Méthodes de traitements d'antenne aprés filtrage spatial®, Thése de I'Université de
Rennes 1, UER SPM, 1988

[2] J. Capon and N.R. Goodman, “Probability Distributions for Estimators of the Frequency-
Wavenumber Spectrum®, proceedings IEEE (Lett.), vol. 58, pp. 1785-1786, Oct.70 and vol. 59,
p.112, Jan. 71

[3] L. Kopp et D. Thubert, "Bornes de Cramer-Rao en Traitement d'antenne. Premidre Partie:
Formalisme®, Traitement du Signal, vol.3, no 3, 1986, pp. 111-125.

[4] G. Bienvenu and L. Kopp, "Source Power Estimation Method associated with HR Bearing
Estimater, ICASSP 81, vol.1, pp. 153-156, Atlanta, March 1981,

[5] A. Borovkov, "Statistique Mathématique®, Ed. Mir, Col. tr, 1883

(6] D. Thubert, L. Kopp, J.P. Le Cadre, "Précision des méthodes HR et Bornas de Cramer-Rao",
GRETSI| B85, Nice, pp. 369-374, May 1985,

Proc.l.O.A. Vol 11 Part 8 (1989)




