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1. INTRODUCTION

We address the problem of target motion analysis (THA) using
distributed sensors when the positions of these sensors are not
completely known. We have recently presented a new method which
simultaneously achieves TMA and the sensors pattern calibration
from doppler measurements [1]. However the results obtained were
corrupted by a slight residual bias. In the present paper, we
explain the theoretical basis of our method and extend it to
various types of measurement (ranges, dopplers. and azimuths).
Moreover, we introduce an improvement based on an iteration of
our algorithm and discuss the results obtained.

In the following, we firstly define our problem formulation. We
then recall our algorithm and justify it from two different
points of view. Next we formulate and discuss the residual bias,
and introduce the improvement of our method. simulation results
are presented and discussed, and we finally state at which
conditions the residual bias can be cancelled.

2. PROBLEM FORHULATION

2.1 Geometric description
The system consists of a moving target and a pattern of N
distributed sensors lying in the same horizontal plane. The
target motion is supposed to be rectilinear and unaccelerated.
Consequently, it is completely characterized by the target
vector : x,(t)-(x(t), y(t), v‘, v,)'.
The N sensors locations are defined by the vector :_

Xe ' (xll' Yai""'xlfl' Yes),-
The measurements coming from any sensor i can be of various
types :
— ranges : d‘(t) - ((x(t)-x“)3+(y(t)-y.1)’)1/2
- dopplers fltt) - fo(l- ((x(t)—x,,)v‘+(y(t)—y")vy)/cd‘(t))
- azimuths 3,”) - tan'1(x(t)-xu/Y(U'Yu) .
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2.2 Identifiability
Our purpose is to estimate simultaneously both the target
kinematics parameters and the sensors locations. From ranges or
doppler measurements, a geometrical analysis shows that the
target parameters x, and the distances between sensors can be
easily derived. But additional information are required in order
to localize them entirely. Nevertheless, in many applications,
the sensors positions are not completely unknown : “a priori"
positions (x. ,,y.,‘) are available for each sensor i. The error
attached on t ese a priori positions is symboled by a covariance
matrix :_ .
In the following section, we shall see how to use these
information to make the probleme identifiable.

3. MAXIHUH LIKELIEOOD BSTIHATOR

3.1 'Random' formulation '
Given. x,(t) and x,, the state vector we want to estimate can be
defined :

xtt) - (x,(t) lxs).
" (x(t)l Y‘t)v V“! Vy! x311 Y.1I°--Ix.nl Yen)

The second part of this state vector has a special status, since
it is considered random, with known statistics (mean position
x. - (x.,1, y.,1,...,x. ., y_p,) and associated variance t.P).
Determinist parameters eing a particular case of random ones,
we can then consider that the whole state vector x(t) is random,
with known a priori probability distribution.
In this case, H.L. Van Trees demonstrates in [2] that if an
efficient estimator exists, it is necessarily the maximum a
posteriori (HAP) estimator.
Given a set of measurements 9, the solution of our problem is
given by :

x(t) maximizing p(x(t)|6),

where p(x(t)|e) is the probability of X(t) knowing a.
This maximization is equivalent to the maximization of :

p(e|x(tn.p(X(tn.

so that the optimal estimator is finally given by :

x(t) maximizing p(x(t). 8):

which is the maximum joint likelihood estimator (5L3).
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Under Gaussian assumptions, one can write :

p(e.x(t)) - p(e|x(tn.p(x(t)). with :

p(9Ix(t)) - Lexp —1/2(e-e(x(t)))':,-1(e-9(x(t)))
p(X(t)) - exp -1/2(xs—X.,)'£.,'1(xs-x_,)

(as x(t) - (x,(t) I x,) and as X; is determinist, the only
contribution to p(x(t)) comes from the a priori statistic on x,)

The maximization of this joint likelihood is then equivalent to
the minimization of the following least mean square criterion :

mum - - Log (P(e.x(t))
- (e-e(x(t)))rz.-1(e-e(x(tm + (x.-x_,)*r.,—x(x,-x_,)

3.2 Determinist formulation
This criterion J can also be interpreted as the least mean
square criterion attached to the following determinist problem :

If the a priori positions x_, are interpreted as observations of
the sensors positions, we can define a global vector of
observations M :

H ' (e: x.,) I

r|o
with an associated variance matrix I - [ -:----- ]

The estimation of x(t), given H and t is then achieved by
minimizing the following Lns criterion :

J - (u-mxmr-Im-nmn
- (9-e(X(t)H'te'He-NXHH) + (X,-X.,)'t.,'*(x,-x.,)

This criterion is the same as the one derived in the "random"
case.
So finally, there are two ways of obtaining the optimal
estimator :

— The first consists in considering the sensors
positions as random parameters and in then defining the
corresponding MAP estimator.

— The second consists in considering the a priori data
on sensors positions as an additionnal part of the observation
vector, and in defining the corresponding LMS estimator.

Under Gaussian assumptions, this LHS estimator is known to be
efficient, and robust.
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3.3 Cramer-Rao Lower Bounds (c.R.L.B.)
The estimation variance of any unbiased estimator cannot be

better than the Cramer-Rao Lower Bounds, defined as the inverse

of the Fisher's information matrix (P.I.H.). Consequently, a

comparison between estimation results and C.R.L.B. will allow us

to state about the quality and the performances of our

estimator. In the determinist case, the C.R.L.B. are given by-:

C.R.L.B. - (r.1.n.)-1 - E{(dL/dx)(dL/dx)")}'1 . where
L - Log(p(n|x)), and n - (e, x”) .

In the "random case", it is shown in [2] that the bounds can be

calculated according to the same formula, but with a different

definition of L :

L ' L°9(P(9.X))

The develo pement of these expressions leads to the same result,

since p(M x) - p(e,x) (see 5 3.1 and s 3.2), so the two

formulations of our problem are in fact equivalent.

4. ALGORITHMS

4.1 Algorithm definition
Our .problem now consists in finding the value of x(t) which

minimizes the L.M.s criterion J. This minimization is achieved

with the help of a Gauss—Newton algorithm. This algorithm is

known to be robust and efficient (i.e. the results obtained are

close to the C.R.L.B.). It is also unbiased in the case where

the sensors positions are exactly known (see [1] and fig 1).

4.2 Residual bias
However, in the case where the sensors positions are random, an

estimation bias appears, even when the sensors positions are

jointly estimated with the target characteristics (cf fig 2).

This bias can be formally calculated from a first order

developpement of J around the minimal value of x :

bias I (P.I.M.)".[

It clearly appears in this expression that this bias is caused

by the fact that we only have a single a priori position for

each sensor, so that s(xs—x,,) - x,-x_, s 0 .
This bias would be cancelled if we had a statistically

representative set of observed sensors positions.
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4.3 Algorithm improvement
We observed in our first simulations that the estimated
positions of the sensors were located between the true positions
and the a priori ones (see fig 2). This fact led us to introduce
an iteration in our algorithm, with the estimated positions of
sensors at step i used as the new a priori positions at step
1+1. (see diagram 1)

A PRIORI INFORHA'HON m. In (I! stop 1)

New a pried data : Xs. ts (nap M1)   

    

   

GAUSS-NEWTON
ALGORITHM

    
   

Slap I :

SENSORS POSITIONS
AND VARIANCE : XI. [a

Bloplz

TARGET STATE VECTOR
AND VARIANCE XI. [I

 

FINAL ES‘HNATION AT STEP N

diagram 1 : algorithm improvement

In the next section, simulations concerning this improvement are
presented and results are discussed.

5. SIH'ULATIONS AND RESULTS

Monte—Carlo simulations have been computed to test our
algorithms. The simulations presented below have been obtained
with a single draw for sensor locations and either a hundred or
ten draws for each measurement. The target position estimates
are symbolized by '0', the a priori sensors positions by '+' and
the true sensors positions by 't'. For each set of estimates,
two position uncertainty ellipses are represented : the one in
thin line is deduced from the CRLB and that in thick line is
calculated from the estimates. In the following, two different
scenarii are considered : in the first one, only the distance
between sensors is imperfectly known whereas in the second one,
both coordinates x and y are unknown.
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- Scenario 1 (pictures 1 to 3) : the pattern is constituted by a
pair of sensors measuring doppler. on picture 1, the two sensors
locations are exactly known and our algorithm proves efficient.
In the two following examples, the location of one of the two
sensors is imperfectly known : its a priori y-coordinate is
correct but there is an error on the a priori x-coordinate and
consequently on the assumed distance between the sensors.
The picture 2 represents the results achieved by our basic
algorithm. One can observe that all the estimates are biased,
but also that the estimated sensor position is located between
the a priori position and the true one. This sensor localization
improvement is due to the doppler measurements which contain
information relative to the true distance between the two
sensors. But these information are not sufficient because of the
error introduced by the a priori x—coordinate.
The picture 3 illustrates the results obtained after ten
iterations of our basic algorithm. We can see that in this case,
our new algorithm converges on the true position of the sensor
and the target. parameters are then correctly estimated. This

' result follows from the fact that the a priori x-coordinate
introduced from one iteration to another is even better.

- Scenario 2 (pictures 4 to 7): the pattern is constituted by
three sensors denoted S, to 5,, each of them providing range
measurements. on pictures 5 and 7, 51 measures also azimuths.
The results presented with the scenario 2 have all been obtained
after ten iterations of our basic algorithm.
On pictures 4 and 5, the three sensors positions are to be
estimated. The estimation results presented on_picture 4 are
biased. We shall notice that the estimated target and sensors
positions can be derived from the true ones by a translation and
a rotation. This is due to the fact that only the distances
between sensors are identifiable from range measurements. The
picture 5 shows that the introduction of azimuth measurements
only eliminates the circular ambiguity of the problem : the
rotation disappears but the estimated positions can still be
derived from the true ones by a translation. Actually, the
estimates obtained are correct in the set of axes relative to
the sensors but are still biased in our own set of axes for lack
of reliable absolute information. If no such information are
available, the residual bias can not be cancelled.
0n pictures 6 and 7, the position of sensor 51 is now perfectly
known. In the two cases, the coordinates x,, and y,2 are
correctly estimated, which is not wondering since these
parameters can be determined from the true position of s, and
the estimated distance between the sensors. However, when S1
measures only ranges (picture 6), the remaining circular
ambiguity causes a residual bias which completely disappears as
soon as azimuths measurements are available (picture 7).
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6. CONCLUSIONS

In this paper, we have examined the problem of TMA using
imperfectly located sensors making various types of
measurements. We have shown that an iteration of the algorithm
presented in [1! led to unbiaised results providing that the
true position of at least one sensor is known and azimuths
measurements are available. Moreover, it has been explained
that, because of identifiability reasons, the residual bias can
not be cancelled unless these additionnal information are given.
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