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Compressed air is a kind of expensive sources in modern industrial factories. Leakage is the
largest waste of energy in a compressed air system. When air escapes through a small orifice
of a compressed gas system, a turbulent noise spectrum is produced. A algorithm combined Or-
thogonal Matching Pursuit (OMP) algorithm and singular value decomposition is proposed for
localization of compressed gas leakages. The method can show the locations of compressed gas
leakages on super-resolution source maps in the low signal-to-noise (SNR) environment. The
experiments are conducted in a mechanical laboratory, with the noise of an air compressor and
environment noises served as the background noises. The SNR is very low in the laboratory. The
leakage orifices are designed in the arbitrary positions in the three-dimensional space. The results
obtained with the proposed method is compared with those with conventional beamformer (CBF)
and the Tikhonov regularization (TIKR) method. The performances of the CBF method and TIKR
method degrade due to low SNR in the laboratory. At the same time, the results show that the CS
algorithm is computationally more effective and can present a super-resolution map. This work
proves the feasibility of phased microphone array and a CS algorithm applied to the localization
of compressed gas leakages.
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1. Introduction

Nowadays, compressed air is the most universal energy medium used by a number of industries.
Despite all its advantages, compressed air is also an expensive energy resource. Energy costs con-
tribute to 75% of the total costs for compressed air production [[1]. A significant share of compressed
air is lost on various accounts. Leaks are the most visible and most significant contributors to com-
pressed air losses. Besides economic effect, the reduction of compressed air losses is significant
for the environment. In order to reduce leak loss, it is necessary to locate the leakage source. Var-
ious methods have been developed and applied to leak detection. Huseynov et.al [2] proposed an
ultrasonic gas leak localization system based on a distributed network of sensors. The system deploys
highly sensitive miniature Micro-Electro-Mechanical Systems (MEMS) microphones and uses a suite
of energy-decay (ED) and time-delay of arrival (TDOA) algorithms for localizing a source of a gas
leak. Steckel [3] applied a random, sparse array of microphones in conjunction with an algorithm
inspired by compressed sensing (CS) to finely localize air leaks. Veronesi et al. [4] applied Trun-
cated Singular Value Decomposition (TSVD) into the sound source location. Hansen [S]proposed a
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new method—Tikhonov Regularization (TIKR), which can also be employed to deal with source loca-
tion. But least squares methods may underestimate the true power of sources severely [6]. Compress
sensing (CS) [7, 8]], a recently developed revolutionary theory, has also been emplied in acoustic
imaging [6, 9, [10]. We propose a method in this work, which combine Orthogonal Matching Pur-
suit (OMP) algorithm of CS and singular value decomposition (SVD). The proposed method named
OMP-SVD method has high efficiency. Besides, it can locate the leakage source exactly even though
the SNR is low.

2. Observation model
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Figure 1: Acoustic signal propagation model

As is shown in Figure [1] it illustrates the model of acoustic signal propagating from the source
plane which is A away from the planar microphone array. The planar array is an optimized random

array with M sensors, which locate at known positions P = [p;,...,P,,]", where [¢]T denotes
the transpose operator. The source plane is discretized into N = u X wu equidistant grids at known
discrete positions P = [py, ..., py]. The measurements of sound pressure at M microphones of the

array in time domain are divided into B blocks. The frequency-domain data of microphone array
Y (f) = [y1,.-.,yu]T can be obtained by averaging the data of all blocks:

B
1
Y() =52 Yulf) (1)
b=1

where Y, (f) = [y, ..., yan]T equals to the measurements data of microphones at bth block. The

unknown vector X comprises the source strength at all N grid nodes.

The pressure field at the mth microphone is given by:
N
T,-eIkrmn

2
2:: AT mn @
where r,,, = ||P,, — Pn|| denotes the distance between the mth microphone and the nth grid node,

k = w/c is the wave number with ¢ being the sound speed, w = 27 f is the angular frequency with f
being the desired frequency, and x,, is the source strength of the nth grid node.
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The model can be compactly expressed in matrix form:

Y = AX,
e—JkT11 e—dkriN
o L T o 3
i e—Jkrpr1 . e~ IkTMN TN

TM1 TMN

where A is an M x N matrix and defined as the measurement matrix. The ith element of the vector
Y consists of the average pressure fields of all blocks of the ¢¢th microphone.

In order to approach real cases, we take the background noise and errors into account. Thus, the
model closer to reality can be depicted as:

Y = AX +e, “4)

where e denotes background noise and error.

3. OMP-SVD method for acoustic imaging

With the help of microphone array, we can get a M x B data matrix y under desired frequency f
from the B blocks of data:

y(f) =[Y1... Y] &)

Similarly, the source strength X is divided as a NV x B matrix x which consists of sources strength
under desired frequency f. We use the SVD of the data matrix y to reduce the sensitivity to noise.
The results decomposes the data matrix into signal subspace and noise subspace, and to keep signal
subspace. Mathematically, this translates into the following representation:

y = UAVT, (6)

Defined the reduced M x K dimensional matrix ygy, which involves most of the signal power

as ysy = UADk = yVDg, where D = [Ik0]'. Here I is a K x K identity matrix, O is a
K x (B — K) matrix of zeros, and K is the estimated number of sources resulting from SVD.In

addition, we transform the N x B signal matrix x as xgy = xV Dk, and let esy = eV Dy, to obtain
the system

ysv = AXgy + egy. (7

In order to apply the CS algorithm to our work, we consider a new system which is equivalent to

Eq. (7): )
y = A% + 8, (8)

where y is obtained by stacking all columns of ygy into a column vector, and similarly for X and e.
Let A be defined as:

A
A:
A

where A is block diagonal with K replicas of A.

The OMP algorithm, a kind of greedy algorithm, can seek the optimal solution through iterations,
which can be used to solve the equation (§)). After each iteration of the OMP algorithm, we obtain
a nonzero vector approximating the signal x. The detailed description and the steps of the OMP
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algorithm for acoustic image can be found in our previous work [6 [10]. According to Eq.(8), we
can find an approximate solution X with the help of OMP algorithm and transform X as the matrix
Xgy. Then we can get the strengths and locations of sources by averaging the source strengths of all
columns of signal subspace Xgy. The strength vector X* of uncorrelated sources can be obtained by

K
X* = = ; diag[Ruq, (1)), 10)

where Ry, (1) = E[Xsv (k)Xsy (k)Y][11]. Here Xgy (k) is the kth column of the matrix Xgy, and E is
the mathematical expectation.

4. Experimental Results and Analysis

4.1 Experiment configuration of the gas leakage
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Figure 2: A 24 channels microphone array

In this experiment, we measured the data by using the planar microphone array shown in Fig[2]

Figure 3: Source configuration of gas leakage

Figure [3] shows the experimental configuration, which includes an air compressor, a plastic pipe,
bracing piece and a jet. Compressed gas was leaked from the jet in the experiment. The acoustic
source at the jet generated the leakage noise. At the same time, The air compressor and other machines
generated loud background noise in the environment. The observation zone of interest was a 0.78 m

4 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

% 0.58 m plane and was discretized into 101 x 76 grids. The distance between the source plane and
the microphone array was 1.1 m.

In the experiment, a 10 s recording was stored for each measurement. Thus we obtained data with
many sampling points for each channel. Then the time domain sampling data were divided into 50%-
overlapping blocks, where each block contained 1024 sampling points. We performed FFT for each
data block after applying Hanning window to each block. Therefore, we obtained the measurement
data of each block in frequency domain for each microphone.
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Figure 4: The spectrum of the gas leakage experiment

Because it is very difficult to obtain the background noise in the experiment, the measured sound
is regarded as the background noise when there is no leakage. The experimental noise spectrum
and the background noise spectrum are shown in Fig. f] Because the power of experiment is almost
equal to that of the background noise at some frequencies, the SNRs is very low at these frequencies
positions. We roughly obtain the SNRs shown in Fig. [5 with the following equation:

SNR(f) = 1010g10(Pmea8ure(f) - Pnoise(f)/Pnoise(f))a (1 1)

where P casure(f) and P s (f) are the powers of the gas leakage experiment and background noise
at the frequency f, respectively. Here the obtained SNRs exist difference from the theoretical SNRs,
which are merely the rough estimate for the theoretical SNRs.
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Figure 5: The SNR of the gas leakage experiment

In order to verify the performance of our proposed method in low SNR environments, the lowest
SNR was chosen to obtain the source maps from the measurement data, where the frequency and SNR
are 6187 Hz and -24 dB respectively. More, we obtained the source maps as SNRs equal to 0.2 dB
and 9.5 dB, where the frequencies are 12937 Hz and 9375 Hz respectively. The source maps from the
proposed OMP-SVD method were compared with those of the CBF method and the TIKR method.
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Figure 6: The source maps for the gas leakage experiment obtained by the CBF methodas the SNRs
equal to (a) 9.5 dB, (b) 0.2 dB, and (c) -24 dB. The source maps obtained by the TIKR method as the
SNRs equal to (d) 9.5 dB, (e) 0.2 dB, and (f) -24 dB. The source maps obtained by the OMP-SVD
method as the SNRs equal to (g) 9.5 dB, (h) 0.2 dB, and (i) -24 dB.

Figure [6] shows the source maps obtained by the CBF method, the TIKR method and the OMP-
SVD method as the SNRs equal to 9.5 dB, 0.2 dB and -24 dB, where the frequencies were 12937 Hz,
9375 Hz and 6187 Hz respectively. For the OMP-SVD method, satisfying results were obtained and
the main source could be located accurately for the lowest SNR -24 dB, which are shown in Fig.
Compared with the TIKR method , the proposed method is more robust, as it works for the low SNR
issues. We conclude that the proposed method could be applied to the low SNR environments for
acoustic imaging.

5. Conclusion

In this paper, we studied the performance of the OMP-SVD method in acoustic imaging, and
compared the maps with those of CBF method and TIKR method.

For the experiment of gas leakage, we have found that the main source lied on the position of jet,
which could be obtained by OMP-SVD method. However, the TIKR method could not be applied
to the aeroacoustic imaging because of the unsatisfying results. The correction of experiment source
maps obtained by the proposed method has been verified through comparing with the maps of CBF
method.
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