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The goal of the present paper is the analysis of the effect of geometric imperfections in circular 
cylindrical shells. Perfect circular shells are characterized by the presence of double shell-like 
modes, i.e., modes having the same frequency with modal shape shifted of a quarter of wave-
length in the circumferential direction. In presence of geometric imperfections, the double natu-
ral frequencies split into a pair of distinct frequencies, the splitting is proportional to the level of 
imperfection. In some cases, the imperfections cause an interesting phenomenon on the modal 
shapes, which present a strong localization in the circumferential direction. This study is carried 
out by means of a semi-analytical approach compared with standard finite element analyses. 
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1. Introduction 
Circular cylindrical shells have been proven to be sensitive to initial geometric imperfections. 
Kubenko and Koval’chuk [1] reviewed many studies on the influence of the initial imperfections 

on the natural frequencies and mode shapes of elastic shells. They analysed the splitting of the natu-
ral frequencies of two conjugate modes as a measure of the initial geometric imperfections imposed. 

Katawala and Nash [2] studied the influence of the initial geometric imperfections on the vibra-
tions of thin circular cylindrical shells. They found that the natural frequency of free vibration of the 
imperfect modes increases with increasing the amplitude of imperfection on the modal shape. 

Shen and Li [3] studied the dynamic behaviour of shear deformable laminated cylindrical shells	
subjected to combined axial compression and uniform temperature loading. They evaluated the ef-
fect of the modal geometric imperfections on the buckling and post-buckling deformations. 

Other relevant studies on the influence of the initial geometric imperfections on the vibrations of 
circular cylindrical shell can be found in Refs. [4-5]. 

In the present paper, the linear vibrations and modal localization in circular cylindrical shells are 
analysed in the framework of the Sanders-Koiter theory [6-8]. The shell deformation is described in 
terms of longitudinal, circumferential and radial displacement fields. Clamped-clamped boundary 
conditions are investigated. The three displacement fields are expanded by means of a double mixed 
series based on Chebyshev polynomials for the longitudinal variable and harmonic functions for the 
circumferential variable; the Rayleigh-Ritz method is used to get approximated natural frequencies 
(eigenvalues) and mode shapes (eigenfunctions). The three displacement fields are re-expanded by 
using the previous approximated eigenfunctions [9-12]; conjugate mode shapes are used; geometric 
imperfections are imposed on the modes in order to investigate the modal localization of the shells. 

The semi-analytical approach proposed in the paper is validated in linear field by means of com-
parisons with finite element analyses. 
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2. Sanders-Koiter linear shell theory 
In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is represented; a 

cylindrical coordinate system (0; x, θ, z) is considered to take advantage from the axial symmetry; 
the origin 0 of the reference system is located at the centre of one end of the shell. Three displace-
ment fields are represented: longitudinal u (x, θ, t), circumferential v (x, θ, t) and radial w (x, θ, t). 

 
Figure 1: Geometry of the functionally graded shell. (a) Complete shell; (b) cross-section of the shell surface. 

2.1 Strain-displacement relationships 
The Sanders-Koiter shell theory is based on the Love’s first approximation [6]. The strain com-

ponents (εx, εθ, γxθ) are related to the middle surface strains (εx,0, εθ,0, γxθ,0) and to the changes in cur-
vature and torsion (kx, kθ, kxθ) of the middle surface of the shell by the following relationships [6] 

,0x x xzke e= +  ,0 zkq q qe e= +  ,0x x xzkq q qg g= +  (1) 
where z is the distance of an arbitrary point of the shell from the shell middle surface and (x, θ) are 
the longitudinal and angular coordinates of the shell, see Figure 1. 

The middle surface strains and changes in curvature and torsion of the shell are given by [6] 
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where (η = x / L) is the nondimensional longitudinal coordinate and w0 is a geometric imperfection. 

In the case of isotropic cylindrical shell, the stresses are related to the strains as follows [6] 
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where E is the Young’s modulus and ν the Poisson’s ratio. The plane stress hypothesis gives σz = 0. 



ICSV24, London, 23-27 July 2017 
 

 
ICSV24, London, 23-27 July 2017  3 

2.2 Elastic strain energy and kinetic energy 
The elastic strain energy of a cylindrical shell is given by [6] 
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where h, R and L are the thickness, radius and length of the shell, respectively. 
The kinetic energy of a cylindrical shell (rotary inertia effect being neglected) is given by [6] 

   
Ts =

1
2
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where ρ is the mass density of the shell. 

3. Discretization approach 
In order to carry out the linear analysis of the shell, a two-step procedure is applied [9]: i) the 

three displacement fields are expanded using a double mixed series and the Rayleigh-Ritz method is 
applied to obtain approximated eigenfunctions; ii) the displacement fields are re-expanded by using 
the approximated eigenfunctions and geometric imperfections are imposed on the modes. 

3.1 First expansion 
A modal vibration, i.e., a synchronous motion, can be formally written in the form [9] 

 
( , , ) ( , ) ( )u t U f th q h q=  ( , , ) ( , ) ( )v t V f th q h q=  ( , , ) ( , ) ( )w t W f th q h q=  (6) 

 
where (u,v,w) are the three displacement fields, (U,V,W) denote the mode shape and f (t) describes 
the time law, which is supposed to be the same for each displacement field (synchronous motion). 

The mode shape is expanded by means of a double mixed series: harmonic functions along the 
circumferential direction, Chebyshev orthogonal polynomials along the longitudinal direction [9] 
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where Tm

* (η) = Tm (2η - 1), m is the degree of the Chebyshev polynomials, n is the number of nod-
al diameters and 

   
( !Um,n , !Vm,n , !Wm,n )  are the generalized coordinates. 

Clamped-clamped boundary conditions are imposed by applying constraints to the coefficients 

   
( !Um,n , !Vm,n , !Wm,n )  of expansions (7) in the form [9] 

 
0u =  0v =  0w =  , 0wh =  for 0,1h =  (8) 

Equations (6) are inserted into the expressions of Us and Ts (equations (4-5)). 
After imposing the stationarity to the Rayleigh quotient, one obtains the eigenvalue problem [9] 

 

   (−ω
2 M + K ) !q = 0  (9) 

 
which furnishes natural frequencies and modes of vibration (eigenvalues and eigenvectors). 
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3.2 Modal re-expansion 
In the modal re-expansion, the displacement fields (u,v,w) are expanded by using the linear mode 

shapes (U,V,W) obtained in the previous analysis and the conjugate mode shapes (Uc,Vc,Wc) [6] 
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These expansions respect exactly the clamped-clamped boundary conditions; the synchronicity is 

relaxed since for each mode j and each component (u,v,w) different time laws are allowed. 
The mode shapes (U (j,n),V (j,n),W (j,n)) are known functions expressed in terms of polynomials and 

harmonic functions, see equations (7); the index n indicates the number of nodal diameters, the in-
dex j is used for ordering the modes (for each n) with increasing associated natural frequency. 

The geometric imperfections w0 are taken into account in the modal re-expansions (10). 
Conjugate mode shapes can be straightforwardly obtained from expansions (7) [6] 
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It is to be noted that axisymmetric modes (n=0) do not exhibit any conjugate mode. 
Equations (10) are then inserted into expressions of Us and Ts (equations (4-5)). 
After imposing the stationarity to the Rayleigh quotient, one obtains the eigenvalue problem (9), 

which gives natural frequencies, modes of vibration and modal shapes (eigenfunctions). 

4. Numerical results 
The mechanical properties of the circular cylindrical shell considered are reported in Table 1. 
 

Table 1: Mechanical parameters of the clamped-clamped circular cylindrical shell. 

Young’s modulus E [GPa] 27.58 
Poisson’s ratio ν 0.42 

Mass density ρ [kg/m3] 1541 
Thickness h [mm] 0.25 

Radius R [mm] 43.65 
Length L [mm] 95.50 

4.1 Validation of the semi-analytical approach  
In order to validate the semi-analytical approach proposed in this paper, the natural frequencies 

of the clamped-clamped cylindrical shell of Table 1 obtained by applying the Sanders-Koiter theory 
are compared with those obtained by FE analyses, see Table 2. These comparisons show that the 
present semi-analytical method gives results close to the FEM, the differences being less than 2%. 
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Table 2: Natural frequencies of the clamped-clamped circular cylindrical shell of Table 1. 
Comparisons between Sanders-Koiter shell theory (SKT) and finite element method (FEM). 

Mode Natural frequency (Hz) Difference % 
(j,n) SKT FEM  
(1,7) 1850.49 1834.56 0.86 
(1,6) 1850.97 1828.80 1.20 
(1,12) 4099.48 4087.13 0.30 
(3,7) 4997.47 4950.22 0.95 
(3,12) 5056.77 5026.58 0.60 
(1,14) 5543.33 5525.31 0.33 
(3,6) 5761.41 5699.60 1.07 
(3,14) 6262.87 6226.28 0.58 
(1,0) 15303.9 15315.8 0.08 
(3,0) 15478.3 15783.9 1.97 
(5,0) 15972.0 16286.4 1.97 

 

4.2 Effect of the geometric imperfections on the modal localization 
In the modal re-expansions (10), the following modes are considered: 
 

• (1,7), (1,7,c), (1,6), (1,6,c), (1,12), (1,12,c), (3,7), (3,7,c), (1,14), (1,14,c), (3,6), (3,6,c), 
(1,0), (3,0), (5,0) along the longitudinal field u 

• (1,7), (1,7,c), (1,6), (1,6,c), (1,12), (1,12,c), (3,7), (3,7,c), (3,12), (3,12,c), (1,14), (1,14,c), 
(3,6), (3,6,c), (3,14), (3,14,c) along the circumferential field v 

• (1,7), (1,7,c), (1,6), (1,6,c), (1,12), (1,12,c), (3,7), (3,7,c), (1,14), (1,14,c), (3,6), (3,6,c), 
(1,0), (3,0), (5,0) along the radial field w 

 
and the maximum number of degrees of freedom of the system is equal to (Nmax = 46). 

The asymmetric geometric imperfections (initial radial displacement field w0) are imposed on the 
modes (1,7), (1,7,c), (1,6), (1,6,c) in the following form 

 
(1,7) (1,7) (1,6) (1,6)

0 (1,7) (1,7, ) (1,6) (1,6, )( , ) ( , ) ( , ) ( , ) ( , )c c c cw wp W wp W wp W wp Wh q h q h q h q h q= + + +  (12) 
 
where W(j,n) are the radial mode shapes of the modes and wp(j,n) are the initial geometric imperfec-
tions imposed on the modes along the radial direction. 

In Figures 2-5 different values of initial geometric imperfections are imposed on the modes (1,7), 
(1,7,c), (1,6), (1,6,c) to investigate the localization of the modal shapes in the circumferential direc-
tion. The results of the Sanders-Koiter shell theory are compared with finite element analyses. 

In Figure 2, the initial imperfections applied are wp(1,6) = wp(1,6,c) = 0.2h, wp(1,7) = wp(1,7,c) = 0: the 
same initial imperfection imposed on the conjugate modes (1,6), (1,6,c) gives no modal localization 
on all the considered modes. 

In Figure 3, the initial imperfections used are wp(1,6) = 0.4h, wp(1,6,c) = 0.2h, wp(1,7) = wp(1,7,c) = 0: 
different initial imperfections imposed on the conjugate modes (1,6), (1,6,c) give no modal localiza-
tion on all the considered modes. 

Therefore, from Figures 2-3, it can be observed that any initial geometric imperfection imposed 
on two conjugate modes gives no localization on the modal shape of all the modes. 
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Sanders-Koiter theory Finite Element Method 
Mode (1,6,c) Mode (1,6) Mode (1,6,c) Mode (1,6) 

    
Mode (1,7,c) Mode (1,7) Mode (1,7,c) Mode (1,7) 

    

Figure 2: Initial geometric imperfections wp(1,6) = wp(1,6,c) = 0.2h, wp(1,7) = wp(1,7,c) = 0. No localization. 

 

Sanders-Koiter theory Finite Element Method 
Mode (1,6,c) Mode (1,6) Mode (1,6,c) Mode (1,6) 

  
  

Mode (1,7,c) Mode (1,7) Mode (1,7,c) Mode (1,7) 

    

Figure 3: Initial geometric imperfections wp(1,6) = 0.4h, wp(1,6,c) = 0.2h, wp(1,7) = wp(1,7,c) = 0. No localization. 
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Sanders-Koiter theory Finite Element Method 
Mode (1,7) Mode (1,6,c) Mode (1,7) Mode (1,6,c) 

    
Mode (1,7,c) Mode (1,6) Mode (1,7,c) Mode (1,6) 

    

Figure 4: Initial geometric imperfections wp(1,6) = wp(1,7) = 0.2h, wp(1,6,c) = wp(1,7,c) = 0. Localization. 

 

Sanders-Koiter theory Finite Element Method 
Mode (1,6) Mode (1,6,c) Mode (1,6) Mode (1,6,c) 

    
Mode (1,7,c) Mode (1,7) Mode (1,7,c) Mode (1,7) 

    

Figure 5: Initial geometric imperfections wp(1,6) = 0.4h, wp(1,7) = 0.2h, wp(1,6,c) = wp(1,7,c) = 0. Localization. 
 

In Figure 4, the initial imperfections considered are wp(1,6) = wp(1,7) = 0.2h, wp(1,6,c) = wp(1,7,c) = 0: 
the same initial imperfection imposed on the non-conjugate modes (1,6), (1,7) gives modal localiza-
tion on all the modes, the localization is maximum on the modes subjected to initial imperfection. 

In Figure 5, the initial imperfections used are wp(1,6) = 0.4h, wp(1,7) = 0.2h, wp(1,6,c) = wp(1,7,c) = 0: 
different initial imperfections imposed on the non-conjugate modes (1,6), (1,7) give modal localiza-
tion on all the modes, the localization is maximum on the modes subjected to initial imperfection. 

Therefore, from Figures 4-5, it can be observed that any initial geometric imperfection imposed 
on two non-conjugate modes gives localization on the modal shape of all the modes, the localization 
is maximum on the modal shape of the modes subjected to initial geometric imperfection. 
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Apparently, the comparison between FEA and semi-analytical model do not match strictly; how-
ever, it is to point out that the mode localization is a macroscopic phenomenon caused by a very 
small perturbation of the geometry, our conjecture is that it is due to a singular perturbation; there-
fore, it is not surprising that small differences in modelling likely lead to non-negligible differences 
in the results. More specifically, FEA does not guarantee perfect circumferential continuity like the 
semi-analytical approach; on the other hand, the latter one is based on series expansion that can 
suffer of convergence problems. 

5. Conclusions 
In this paper, the effect of the geometric imperfections on the modal shapes of cylindrical shells 

is analysed. The Sanders-Koiter shell theory is used. The shell deformation is described in terms of 
longitudinal, circumferential and radial displacement fields. Clamped-clamped boundary conditions 
are applied. Geometric imperfections are imposed to investigate the modal localization of the shells. 

The semi-analytical approach proposed in this paper is validate in linear field by means of com-
parisons with finite element analyses. From these comparisons, it is found that any initial geometric 
imperfection imposed on two conjugate modes gives no localization on the modal shape of all the 
modes. Conversely, it is seen that any initial geometric imperfection imposed on two non-conjugate 
modes gives modal localization on all the modes; this localization is maximum on the modal shape 
of the modes subjected to initial geometric imperfection. 
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