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1. INTRODUCTION

Pitch detection is one oi the more Important problem in speech processing. The required accuracy at the
pitch period estimate depends on the task tag. perception, coding or labelling). Different levels of pitch
analysis could be considered: voiced/unvoiced discrimination. pitch trequency estimation. glottal closure
instant detection and glottal waveform extraction. The analyses are increasingly complex and require a
better knowledge at the glottal wavelorm. In this paper. analyses up to the extraction at the Giottal
Closure Instant (G6!) are d'scussed. The pitch period gives inlonnation about intonation patterns while
the Gal allow pitch synchronous analysis oi the speech signal. which is importam in synthesis or coding.
For all types ot analysis a number of algorithm have been proposed over the years but there is no
algorithm that is able to deal with all conditions and all voices [1]. These algorithms can be divided into
three classes. according to the knowledge required [2]. The first and oldest method is based on pitch
extraction tram either time or spectral representations. the second class is based on perceptual theories
and the third uses auditory models The first two classes have been extensively studied [1.3] whie
comparisons with auditory model based pitch extradors are rare [4].
Two algorithms. one an auditory model and the other an inverse filter based approach. were studied and
are compared with a relerence traoe obtained trout the derivative oi the laryngograph signal. To allow a
meaningtul test at the two algorithms tor both problems, pitch and GCI extraction. the raw data is
processed with shared methods. fig. 1.
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Fig 1. Schematic diagram of pmssing steps disused in this paper Proc.l.0.A. Vol 16 Part 5 (1994) 81



  

Proceedings of the Institute of Acoustics

PITCH ANALYSIS : AUDITORY MODEL VERSUS INVERSE FILTERING

2. METHODS

To obtain a quantitative measure 01 perlormance both the output at the auditory model and the residual
signal lrorn inverse filtering are compared with the laryngograph signal. The generation ct these slgnals is
described in the tollowing sections. These signals were processed with same GCI and pitch detector
(Fig.1).

2.1 Laryngograph
The laryngograph measures the impedance across the vocal cords [5]. The signal obtained (EGG) is the

best estimate of vocal cord activity [6] because it is not modified by the vocal tract. The glottal closure
represents a discontinuity in the kinetics ot the vocal cord which is extraaed by calculating the derivative

oi EGG [T].
The derivative 0! EGG (DEGG) is used as a reference in all experiments. Figure 2 shows the DEGG
signal with a speech trace. Note that glottal activity can be seen even tor near silent speech sections (fig
2 A s B) or vice versa periodicities without glottal activity (fig.2 c a D).

  

2.2 The Auditory model
Auditory models are attractive tor pitch extraction because they predict pitch perception data well [8] and

are robust in noise [4, 9]. The AMPEX pitch extraction algorithm [41 is one oi the best pitch extraction
algorithms [2) but does not predict pitch perception data because the nerve model driving it generates an
envelope representation,
Physiological experiments [1 t] have shown that a population ot neurones in the cochlear nucleus. the iirst

processing stage in the auditory pathway, selectively extract the lundamental trequency ol complex

stimuli. Models of these neurones predict the pitch at complex tones more robustly than a cochlear nerve
model [to].
The model used here contains the key elements ol the AMPEX algorithm. but models at cochlear nucleus
onset units replace the cochlear nerve envelope representation used as the Input to the original algorithm.
The onset models selectively enhance pitch periodicities by summing cochlear nerve activity over wide
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frequency bands (7 barks) and pericmiing a peak picking operation. In contrast to the original AMPEX
algorithm this method is able to predict pitch etiects. such as pitch shiit ot harmonic components [to], As
the auditory model '5 sensitive to peaks in the signal it is interesting to see how well it performs tor GCI
detection.

2.3 The Residual signal
Marital and Gray [12] propose that the LPC residual Is a good basis for extracting glottal information. in
theory linear prediction finds the filter characteristics at the vocal tract. so using inverse filtering the glottal
intormation can be estimated. This is the principle oi the Sit-T algorithm [13]. To increase the noise
robustness of this method we use the Instantaneous envelope oi the LPC residual. The analysis is shown
schematically in fig 3. The signal is first passed through a pro-emphasis module improving the accuracy oi
the LPc analysis [12]. The analysis is performed on 25.6ms asynchronous windows. overlapping by
12.3ms. The filter corresponding to the vocal tract ‘3 calculated irom the LPc coefficients and the residual
is obtained by inverse filtering. This operation is successful only it the signal is energetic enough. To
increase the residual amplitude tor voiced frames it is weighted by the energy ratio between the original
and the ore-emphasized version. This minimizes the iniiuence of noise on iow amplitude residuals [1] and
arleiacts produced by iricatives.
From a theoretical point oi view. the residual signal contains only the glottal information it the LPC filter
reprents exclusively the vocal tract. In practice this is never achieved because the characteristics oi
vocal tract are unknown. This means that the residual signal generally contains some noise corresponding
to vocal tract characteristics. To remove some of this, the signal is clamped [14] and low pass filtered
[12]. This signal is then used as the input to the peak detector. Performance can be improved further by
using a quadratic detector [15]. Here the instantaneous envelope oi the signal computed with the Hilbert
transformation is used. I

Instantaneous

Envelope

 

2.4. Pitch Extraction
The signals are processed by two diiierent algorithms to obtain
1. a pitch estimate or 'unvoiced "39' for each terns trams oi the signals.
2. the exact timeoi glottal closure ior each glottal pulse. The analysis is only performed for the voiced

sections.
The two experiments are discussed in turn.
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2.4.1 Pitch Estimation and Voiced/Unvoioed Decision
The aim at pitch estimation is to obtain a precise measurement of the pitch in each oi the frames making
up a speech signal. The pitch is estimated by calculating the autocorrelation function (RF) tor the IF and
DEGG signals and by using the AMPEX algorithm on the auditory model output Pitch estimates are
obtained every toms (F) and rectangular windows (W) at 30 ms duration are used. The pitch period is
taken to be the maiimum position in the autooorrelalion time lag function. SIX] represents sampte x at
speech signal, and S the mean overthe window.

W

R“ = 2(S[F+n]—§)(S[F+n+r]—§).
no

The most problematic step in pitch extraction is the voiced/unvoiced decision. The decision algorithm is
based on the value at the maximum autooorrelation lag. It it lies below a set threshold the trams is
considered unvoiced, whereas it the maximum value exceeds the threshold the frame is oonsidered
voiced.
The AMPEx'aigorithm is slightly diiterent. It calculates a quasi-autocorrelation using a 'mlnimum operator
rather than the product. Evidence is also collected over 2 frames preceding and iollowing the tram to be
evaluated. The AMPEX algoilthm was evaluated tor the ENV and DL signals but was tound to penorm
worse than a simple autoccrrelation. V

The decision thresholds have to change with background noise level. It is assumed that the noise level is
known. The threshold is optimised to give the bestpossible average pedormance tor all speakers but
varies with noise level. 4

2.4.2 Giottal Closure Instant Extraction
In order to compare the diflerem signal representations the same peak detector is used. only the
thresholds are adjusted according to the nature oi the signal. The GCI detection is periorrned in two
steps. figure 4:
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3. RESULTS

3.1 The speedt corpus
All experiments are carried out on a total oi 110 secs of speech recorded from two ten-tale and two mate
speakers reading “The North Wind and me Sun'. a phonetically batancad text. Speech and Iaryngogtaph
were recorded simultaneously onto a DAT tape and sampled at zeki-lz. The robustness in noise at the
algorithms is tested using additive white (gaussian) noise. Signal to noise ratios are given a. S, m.
F'erionnance measures are calculated against reference data obtained from the ELG recordings. 7

3.2 Pitch estimation
The speech data were processed hm,“ mm
by both algorithms using 30m
rectangular windows. Pitch
estimates are returned every
toms. Errors are calculated as in
[4]: A pitch estimate is correct it
the estimate lies within 20% at
the reference for voiced speech.
or if the trams is correctly
identified as unvoiced. Three
types of errors can occur,
unvoiced trames can be
mislabelted as voiced trames. and
vice versa or the pitch estimate
can difler by more than 20% from
the reference

3.2.1 Auditory Model versus
Inverse Filtering.

Fig 5 demonstrates that the pitch
estimation priormances oi the
auditory model (AM) deteriorate
with increasing oi noise level
[81.4% tor clean speech, and
61.7% at OdB SIN). Using inverse
filtering HF), no significant
diflerence is noted between clean
and ZOdB SIN conditions.
Performance decreases lrorn
iodB SIN (5.6% less). OdB SIN I . “6?”.“9‘554'3 I ‘ roimwrctesm_
does no. Gauss a guru-.6, FIESPIlcheslnnauou results. Evolunon,trt function of misstatements:
significant delefioratbm Imam correctpitch estimation (top) andthcmorsibottom) forIFGsfl.) IndAM

filtering seems more robust 'n' (“ho
noise perturbations than the auditory niodef.
It is also interesting to compare patterns oi error rates between AM and IF. It is apparent that
unvoiced/voiced error is simiiar tor the both signals. in contrast, voiced/unvoiced error increase
considerably in the case oi AM (5.9% tor clean speech to 24.4% at NE SN), while this error is constant
in the case of lF. Moreover voicedrltnvoiced decision performance is constant tor IF (except at ladB SIN
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with 2% less) while it deteriorates more tor AM (from 83.5%10 69.9%). In tact the decrease oi pitch

estimation perlormance Ior IF is due to the gross errors (irurn 1.7% to 7.7%]. This percentage is stable for

AM until DdB SIN.

3.2.2 Comparison with other studies.

To allow a meaningful comparison at the results with previous data [3. 41 our database was processed

using the SHS algorithm [2] which in turn has been compared with a number at other algorithms. 111a

error rates (in 'Itz) are given in table 1.

The dilterence between the error percentages is due to the reference used. In Van immerseel and

Martens [4] the reference was not the laryngcgraph output but the average ol a number at pitch estimates

generated by ditierent algorithms. The same SHS algorithm gives 14.5% at error with Iaryngcgraph

reference on our data compared with 5.3% in Van lrnmerseel's study. In Rabiner the pitch relerertce is

computed visually from the speech signal. But pericdicities in the signal do not always reflect glottal cord

activity. and vice versa some glottal cord activitie does not produce periodic signals. Examples are shown

in Fig 2.

- thors FIabiner and al. Van Immerseeland Martens This study

3845 tramee 5500 names 11036 lrames

- I rithrns SEFT AMPEX SIF‘I' SHS AM IF SHS

.m-

.2-

.E- m
“Emma-Imme-
Table 1 : Percentages of errors tor Rabiner and al. Van lmmerseel and Martens and this study.
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We can nevertheless compare Van lrnmerseel and Martens' results with this study assuming an oflset oI

53-10% due to the diflerent relerence used. In their study the SIFT algorithm gives worst results while in

this study the auditory model performs worst. The steps added to the computation of the residual seem

elt'tcient.
We can also compare results in noise. Van Immarseel and Martens obtained around 5%. 7% and 27%

errors with AMPEX and 10%. 15% and 26% with Sll-‘l’ respectively at 20. 10 and OdB SIN. In our case we

have 15.2%. 20.8% and 21 .4% with IF and 20.3%. 25% and 38.3% for AM. The peflormances of the

auditory modei decrease rapidly tor DdB SIN. Results obtained at Ma SIN with IF are significantiy better

tehn those of the other algorithms. especially if the 10% ct olfset due to the dillerent references is added.

3.3 GO! RESULTS

To compare the reSults we used rive criteria according to studies on pitch detection [1]. The number at

lalse alarns. the number ol missing peaks. the number oi gross errors, the number cl line errors and the

number of good detections. Krishnamrphy and Ghilders [7] report that me derivative of laryngograph

gives the glottal Closure instant at an accuracy at two sample points at tokHzt Here estimates within 5

samples (0.25ms) ol the DL signal are considered correct. For the limit between gross error and line error

we take 1ms (20 p15) according to Habiner et at. [3] The DEGG gives 7360 GGI tor the entire database.

Results are shown in Fig 6.

Inverse filtering gives significantly better results than the auditory model in all noise conditions.

For IF the pencrmance deteriotes with noise level. In the case oi the auditory model. detection is robust

lor low levels oi noise tzccB oi SIN). but deteriorates more with increasing noise level.
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Diflerent patterns in the change at error with noise level are also visible. In the case ol the auditory model
performance deteriorates due to missing the em while for inverse filtering the number of gross and line
errors increases.
The tact that the auditory model perlorms worse in this type of task is not surprising considering that the
processing is a 'peak picking' or coincidence detection operation across a number at cochlear nerve
channels. each at these channels receives input from a band-pass filter with détferenl group delays which
is only partially compensated (in line with physiological data).

4 DISCUSSION

In both cases. pitch or GCI estimation. the inverse filtering gives better results than the auditory model tor
all noise levels tested. The pedormance ot the auditory model deteriorates considerably tor high levels at
noise. Our data does not dilter trorn Van lmmerseel and Martens study. The AM performs a peak picking
operation. At low level or noise. peaks producd by the closure ol glottal chords are still visiole. When the
noise level increases. peaks are increasingty obscured. This is supported by the tact that the percentage
missing or voicedlunvoiced errors increases most in noise.
In the case of inverse filtering. it is not the peak due to the Get that is detected but modifications at the
characteristics ol the signal. So it is more robust in noise. Gross errors lor pitch estimation and fine and
gross errors lor GCI increase most strongly. inverse filtering always detects modifications but has
increasing dilficully in retuming accurate timing inlormation.
The choice at relerence is an important problem in pitch analysis. We saw that results differ significantly
according to the relerence used. This problem poses the lundamental question of why the pitch analysis
is carried out. If Iaryngograph data is used as reference. models at speech production are evaluated. The
main aim is to detect glottal cord activity and not its ellect on the signal. It consequently seems natural
that a model based on production such as inverse filtering is better than methods based on the perception

Proc.l.o.A. Vol 16 Part 5 (1994) :7
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or the physiology. A con-(meta oornpafison oi the algorithms necessitates the use of diflerent references

according to ditlerent task (production or perception).

5 CONCLUSION

This study shows that tor both problems. pitch and Get estimation. inverse filtering gives better results

than the auditory meet. at all noise levels. The is clue tothe processing oi these methods. and in part to
our pitch relerenoe which reflects only a production point oi view.

Future work should include testing the relative contributions of the enhancements added to the inverse

littering algorithm. M The auditory model was designed with the primary aim to simulate responses in the

brain stem. it would be interesting to correlate the mode: penonnance with perceptual data.

6 ACKNOWLEDGEM ENTS

This work was supported by Contract SGI—CTez—maa of the EC Science Programme. The authors thank

especially Dr. D. J. Hermes of the IPO. Eindoven for this help in processing our database.

7 REFERENCES

[1] Hess "Fitch determination ct speech signals‘ Springer-Venag. (1963).

(2] D.J. Hermes ‘Pitch analysis" In Visual representations of speech Cooke. Bee! and Crawford Eds. 1-

25. (1993)
{3] L. M. Rabiner. M.J. Chang, A.E. Rosenberg. c. A. McGonegal “A comparative performance study at

several pitch detection aigcrilms.‘ IEEE ASSP V0124 399-418. (1976).
{4) L Van lmmerseel and .J-P Martens "Pitch and voiced/unvoiced determination with an auditory model"

(J Am Soc Acme! 91(6) 3511—3526. (1992)

[5) A.J. Fourcin, E. Abberlon 'Firet application at a new laryngcgraph' Medical and Biological Illustration

21. 172-132. (1971).
(6] G. Chllders AM. Smith G.P. Moore "Relationships between electmgluttoglaphy speed! and vocal cord

contact" Folia Phoniatrica Vol.36. 105118(1984).

[7] K. Krishnamurphy. D. G. Childers 'lwcchannel speech analysis" IEEE AssP Vol.34, 730-743.
(1986).

[8] FiMeddis and mu. Hewitt "Virtual pitch and phase sereitivity at a computer model at the auditory
. periphery. 1: Pitch identification“ J Accust Soc Am 89. 2886-2882 (1991).

[91Ainsworth and G.F. Meyer.'Reoognitlon oi plosive syllables in noise: Comparion of an auditory model
with human periorrnance'. J Acoust Soc Am 992. 687-695 (1994).

[1016.F. Meyer and l. Dewar.'COmpar-ing pitch extraction in the cochlear nerve and cochlear nucleus”.
this volume (1994).

[11] AB. Palmer and IM. Wintet’ Coding the undernemal lrequency ol voiCed sounds and han-nonic
complexes in the cochlear nerve and cochlear nucleus" in The Mammalian Cochlear Nuclei Ed:
Merchan et at. Plenum Press . 373-354 (1996) .

(12] D. Markel. A. H. Gray “Linear prediction ot speech‘ Springer-Venn, (1976).
[13] JD. Mantel "The Sll-‘r aigorithm tor iundamental lrequency estimation“ lEEE Trans. Audio Else, 20,

367-377, (1972).
[14) M, Cheng. D. O'Shaughnessy 'Aulomatic and Rliable Estimation of Glottal Closure Instant and

Period' IEEE ASS? Vol.37.1505—181fl.(1939).
{15] L. Atlas. J. Fang 'Advantages ot general quadratic detectors for speech representations' In Visual

representationsot speech Cooke. Best and Grawtord Eds. 161-165. (1993).

as Proc.l.0.A. Vol 16 Part 5 (1994)


