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Thermoacoustic instability is a phenomenon that occurs in numerous combustion systems,
from rockets to land based gas turbines. The resulting acoustic oscillations can result in severe
vibrations, thrust oscillations, thermal stresses and mechanical loads that lead to fatigue or even
failure. This propensity to instability has been found to occur much more frequently in lean pre-
mixed combustion, one of the recent methods used in the gas turbine industry of aeroengines and
power gas turbines to reduce NOx emissions. In this work we consider a simplified combustion
system, and analyse the sensitivity of its thermoacoustic modes to small changes in the flame
and combustor geometry parameters. Such a sensitivity analysis offers insights on how best to
change the combustion system so as to “design-out” instability. The simplified combustor is mod-
elled using a low order network representation: linear plane acoustic waves are combined with
the appropriate acoustic boundary and flame jump conditions and a linear n-tau flame model. A
sensitivity analysis is then performed using adjoint methods, with special focus on the sensitivity
of the modes to parameters, such as reflection coefficients and flame model gain and time delay.
The gradient information obtained reveals how the thermoacoustic modes of the system respond
to changes to the various parameters. The results offer key insights into the behaviour and cou-
pling of different types of modes - for example acoustic modes and so-called “intrinsic” modes
associated with the flame model. They also provide insights into the optimal configuration for the
design of such combustors.
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1. Introduction

The flame-acoustic interaction has received much attention since Rayleigh proposed the feedback
mechanism between unsteady heat release fluctuations and pressure fluctuations [1]. The unsteady
flame behaviour in the calculation of thermoacoustic modes can be well approximated by a simple
linear transfer function like the n− τ model [2]. Using this model and assuming zero Mach number,
[3, 4] the stability of the first acoustic mode of a Rijke tube is shown to alternate between stable
and unstable as the time delay of the flame transfer function is increased. Its stability changes ap-
proximately when the time delay increases by a factor of π/ω0 (where ω0 is the organ pipe mode
frequency under consideration). This is equivalent to shifting the phase of the heat release by 180◦

which translates, according to Rayleigh criterion, into an excitation (or damping) of the mode un-
der consideration. More recent contributions by [5] also perform a sensitivity analysis with an n− τ

model in the zero Mach number limit and show that the time delay has an effect on the stability of
the first acoustic mode particularly when the flame is in the first half of the duct [5]. The effect of
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the flame element has recently been shown to also give rise to intrinsic flame instabilities [6]. They
showed that the flame element not only interacts with the acoustic modes but also causes instabilities
without the acoustic feedback mechanism. This can be clearly observed when no acoustic reflection
is enforced at the boundaries.

2. Derivation of the wave based model for a Rijke tube

A schematic of the Rijke tube can be seen in figure 1. Early experiments on the system were
performed with the tube in its vertical position such that a mean flow induced by convection is estab-
lished [7]. Turbine combustors are generally oriented horizontally and the mean flow is due to the
compressor upstream. The regions upstream and downstream of the flame generally present different
mean flow properties due to the mean heat addition of the flame. As a result, the wave equation is to
be solved in the two regions separately while interpreting the flame as a jump condition [8].

Figure 1: Schematic of the Rijke tube problem

The form of the pressure and velocity fluctuations that satisfy the wave equation are as follows:
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where i = 1,2 corresponds to the respective sections and the letters A and B represent, respectively,
the amplitude of the forward and backward travelling waves. The form of the density fluctuation is
the same as for the pressure, but multiplied by a factor of 1/ci

2. In general an entropy wave is also
present as an additional term in the downstream region [9], but in the case of small Mach numbers
and open tube ends we can neglect this effect.

To simplify the analysis the wave form of the solution is transformed into the Laplace domain as
follows:
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In order to complete the system of governing equations, we need boundary conditions at xu and
xd as well as the jump condition at the flame location x f . The boundary conditions can assume the
form of a transfer function (in the Laplace domain) relating the impinging wave to the reflected one
(e.g at the inlet A1/B1 = Ru(s) while at the outlet B2/A2 = Rd(s) ). The relations read:
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The exponents represent the time delay for a wave to travel along the section length and back, and
hence we can call them τu =

2c1xu
c1

2−u1
2 and τd = 2c2xd

c2
2−u2

2 .
The dimension of an air-methane flame under standard conditions is significantly smaller than

the wavelength of the acoustic wave [10]. Hence the flame front, seen by the acoustic wave, can be
treated as a planar discontinuity and can be referred to as compact [10]. The flame jump conditions
are derived by imposing the governing equations across the flame [8] and read as follows, where
J·K = (·x+f −·x−f ):

JPK+ρ1u1JuK = 0 (5)
γ

γ−1
JPuK+

1
2

ρ1u1Ju2K = Q/A (6)

(7)

After the linearisation, the jump conditions for the fluctuating quantities are:
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By implementing the jump conditions for the position of the flame at x f = 0, we can recast the
system in matrix form (the expression for the coefficients can be found in the Appendix A:[

X11−Y11Rue−sτu X12−Y12Rde−sτd

X21−Y21Rue−sτu X22−Y22Rde−sτd

][
B1(s)
A2(s)

]
=

[
0

Q̂(s)/(c1A)

]
(9)

At this stage the only unknown left to be determined is the form of the fluctuating heat release rate
Q̂. In the Laplace domain this is given by the flame transfer function relating the impinging velocity
fluctuation (which transports the reactants) to the mean heat release rate. In this work we use the n−τ

model [2], defined as (at x = 0):

H(s) =
Q̂(s)

Q
u1
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= n f e−sτ f (10)
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n f Q
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For simplicity we rename m =
n f Q

Aρ1c1u1
. Substituting this expression into the above matrix and

rearranging, we can obtain a system in the form Mx = 0 where x = [B1(s),A2(s)]T .[
X11−Y11Rue−sτu X12−Y12Rde−sτd

X21−Y21Rue−sτu−me−sτ f (Rue−sτu−1) X22−Y22Rde−sτd

][
B1(s)
A2(s)

]
=

[
0
0

]
(11)
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Once the system is in this form, the dispersion relation is obtained by setting the determinant of
the matrix M to zero. The Laplace variable s represents the complex eigenfrequency of the system
(s = σ + iω). Frequently it will be simply referred to as the ‘eigenvalue’ but this should not be
confused with the eigenvalues of the matrix M.

3. Adjoint analysis

The use of sensitivity analysis in design is an active area of research but has only recently been
applied to thermoacoustic systems. In this section we derive the method used in this work but the
reader is referred to reviews and introductions from authors like [11, 12] for more details on the
derivations.

3.1 Derivation of a general sensitivity equation

We consider the system given by Mq = f where M(s, p), q, f(s, p) ∈C. The variable p represents
a set of parameters and boundary conditions of the problem (p = (τ f ,xu,xd,x f ,Ru,Rd, l, ....)). The
variable s is defined as before. In sensitivity studies we are interested in identifying the variation
of the eigenvalues of the system with respect to a slight variation in the parameters p [13], this was
also called base sensitivity by [14]. Using Lagrange multipliers we can derive an expression for the
sensitivity of the ith eigenvalue si to changes in the parameter or boundary conditions, i.e. ∂ si/∂ p.
We now define the scalar cost functional J = ℜ(s(p)) as any real scalar objective that we want to
minimise, for example the real part of the least stable eigenvalue. We can reformulate our constrained
optimization problem as an unconstrained one using the Lagrange multiplier approach.

L = J−〈a,Mq− f〉= J−a∗(Mq− f) (12)

where the costate is a ∈C. An appropriate inner product 〈,〉 for the complex case has been applied
and the ∗ symbol denotes the complex conjugate transpose.

The variable δL is obtained by a first variation, and the optimisation procedure requires δL = 0
for every δa, δq, δ p and δ f. This leads to a set of equations that has to be satisfied to optimise the
system.

δL =

〈
∂L

∂aaa
,δaaa
〉
+

〈
∂L

∂qqq
,δqqq
〉
+

〈
∂L

∂ fff
,δ fff
〉
+

〈
∂L

∂ p
,δ p
〉

(13)

The first term (differentiation with respect to the costate) retrieves the governing equations, the
differential with respect to the state variable gives the adjoint equation, and finally the equation for
the sensitivity is obtained by differentiating with respect to the design parameter of choice. The
differentiation with respect to the forcing fff is not treated in this work.

〈
∂L

∂aaa
,δaaa
〉
= (MqMqMq− fff )∗δaaa (14)〈

∂L

∂qqq
,δqqq
〉
=−(MMM∗aaa)∗δqqq〈

∂L

∂ p
,δ p
〉
=

∂J
∂ p

δ p−
(

aaa∗
∂MMM
∂ p

qqq−aaa∗
∂ fff
∂ p

)
δ p

To obtain an expression for the sensitivity to the design parameters all three conditions must be
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solved simultaneously. Hence the system is

∂J
∂ p

= aaa∗
∂MMM
∂ p

qqq−aaa∗
∂ fff
∂ p

(15)

MqMqMq− fff = 000
MMM∗aaa = 000

At this point it is important to note that the matrix M is a function of both p and the eigenvalue s,
which is in turn a function of p. Furthermore, both the cost functional J and the vector f can also be a
function of s. In the present thermoacoustic system there is no forcing (f=0) and we are interested in
the behaviour of the eigenvalues with J = 0. We then obtain:

∂ si

∂ p
=

a∗a∗a∗ ∂MMM
∂ p qqq

a∗a∗a∗ ∂MMM
∂ s qqq

(16)

This is a relatively simple expression that can provide insightful information on the behaviour of
the system’s modes in response to changes in parameters.

4. Results

A preliminary analysis for a case of zero Mach number and zero mean heat addition provides an
insight on the behaviour of both the acoustic and intrinsic modes. The following special cases of
analytical solutions can be obtained when setting the determinant of the system (11) to zero:
• m = 0 : This is obtained with a zero gain in the n−τ model (n f = 0) and recovers simple organ

pipe acoustic modes{
ω = kπc/(2l)

σ =− c
2l ln

(
1

RuRd(−1)k

)
with k such that (RuRd(−1)k > 0) , k ∈ Z

• Ru = Rd = 0: This case represents an anechoic situation. This situation eliminates the organ
pipe modes and highlights the presence of intrinsic modes. The form of the solution isω = nk

τ f

σ =− 1
τ f

ln
(
−2

(−1)km

)
with k such that (m(−1)k < 0) , k ∈ Z

• Ru = Rd and τu = τd: for example a Rijke tube with closed-ends and the flame placed in the
middle. This symmetric configuration allows us to recover the intrinsic and acoustic solutions
without allowing them to interact.

The present study focusses mainly on the effect of the location of the flame and the time delay
used in the n− τ model. In particular, we investigate how, by placing the flame in different loca-
tions of a Rijke tube with closed ends, the behaviour of the modes of the system changes. Figure 2
shows the effect of changing the flame position on the evolution of the eigenvalues in the complex
plane. The plots have been chosen with x f ∈ {0.5,0.35,0.25}. The symmetric configuration (figure
2a), as derived analytically, shows non-interacting intrinsic and acoustic modes. Shifting the flame
upstream (figure 2b) drastically changes the behaviour of the modes as the n− τ model time delay
is changed. The acoustic modes describe ellipses while the intrinsic ones also oscillate from their
1/τ f trajectories. Most importantly, when the intrinsic modes enter one of the acoustics orbits they
replace the mode and force it to move to a lower frequency. These interactions differ depending on the
modes, it can be seen that the third organ pipe mode of figure 2b remains unaffected by the intrinsic
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modes. This can be better explained by looking at figure 2c, when the flame is at x f = 0.25. We
see that the second and 4th acoustic mode recover the ‘classical’ form of perfect organ pipe modes,
suggesting that a feedback mechanism cannot be established between the flame and these acoustic
modes. This highlights the importance of the flame position, in particular, as it governs the magnitude
of the upstream and downstream time delays and therefore the phase of the reflected waves from the
boundaries. It is argued that if the reflected waves interact destructively at the flame location (e.g.
symmetric case) the interaction between acoustic and intrinsic modes can be removed.
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(a) x f = 0.50
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(b) x f = 0.35
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(c) x f = 0.25

Figure 2: Acoustic (blue) and Intrinsic modes (black) in the complex plane at the time delay is
increased in the range [1-10]ms for the flame at location x f =0.25, 0.35, 0.5

Sensitivity analysis can provide further information on this behaviour. The sensitivity presented
here has been performed with the location of the flame gradually changing within the range x f =
[0.4,0.5]. This allows us to study the behaviour of the first acoustic mode as we perturb the symmetric
configuration. Figure 3a shows the evolution of the interaction. The acoustic mode draws increasingly
larger ellipses until a swap with the intrinsic mode occurs. Figure 3b, representing the evolution of
the frequencies, allows us to better detect when this interaction occurs, around τ f = 7.5−8ms. The
sensitivities with respect to the upstream reflection coefficient (Ru), downstream reflection coefficient
(Rd), the flame position (x f ) and cut-off frequency (τ1) are shown in figures 3c,d,e,f respectively.
Sensitivity with respect to Ru highlights very clearly that the intrinsic modes are not particularly
affected by this design parameter. In the neighbourhood of a swapping condition their sensitivity
increases and, jumps to values of the acoustic one when the swap occurs. The downstream reflection
coefficient (Rd) is similar to the upstream one in both magnitude and behaviour. Sensitivities to the
flame position are an order of magnitude larger than the previous ones, however the overall behaviour
of a peak in sensitivity in the neighbourhood of the swap is also observed here. The results clearly
show that the swap in modes is reflected also in the sensitivities. In particular the modes show higher
sensitivity in the regions when the swaps occur.

5. Conclusions

The main finding is the occurrence of an interaction between the intrinsic and acoustic modes.
This interaction generally occurs when the time delay of the intrinsic modes is sufficiently large such
that the −1/τ f term in front of the expression for the growth rates of the intrinsic modes assumes
values similar to those of the acoustic modes. Secondly, the location of the flame determines the
susceptibility of the acoustic modes to actually interact with the intrinsic ones. If the location is such
that the acoustic velocity perturbation is small, its mode will not be affected by a change in time
delay. Vice versa, the farther from these locations, the more the acoustic modes will be affected. This
is easily observed by plotting the behaviour of the modes in the complex plane (figure 2). We argue
that it is important to take into account the interaction between the acoustic and intrinsic modes in
order to fully understand the sensitivity analysis. In particular, higher sensitivity has been observed
to correspond and highlight the location and time delays at which these interactions occur.
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(c) Sensitivity with respect to Ru 6 < τ f < 10ms
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(d) Sensitivity with respect to Rd 6 < τ f < 10ms
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(e) Sensitivity with respect to x f 6 < τ f < 10ms

Figure 3: Complex plane (a) and frequency plot (b) of the interaction of the first acoustic mode with
the intrinsic one. Plots are enlarged in the region where the time delay τ f is in the range {6-10}ms and
the flame position is changed from its symmetric configuration to 0.4 towards the inlet. Sensitivities
with respect to the upstream reflection coefficient (c), the downstream reflection coefficient (d) and
the flame position (e) are also shown.
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The investigation presented here constitutes a preliminary analysis on the interaction that intrinsic
and acoustic modes can present. Further investigations are necessary to fully understand the nature of
this interaction. However, the importance of the flame location has been identified from the sensitivity
analysis to be a major player in the interaction.
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Appendix A.

Coefficients of the matrix M

Y 11 = 1−M1
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u1
−2
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−M1

2
(

u2
u1
−1
)

X11 =−1−M1

(
u2
u1
−2
)
+M1

2
(

u2
u1
−1
)

(17)

Y 12 = M2−1 X12 = M2 +1

Y 21 =
1+M1γ

γ−1
+M1

2−0.5M1
2
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((
u2
u1
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−1

)
X21 =

1−M1γ

γ−1
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2−0.5M1
2
(1−M1)

((
u2
u1

)2
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Y 22 =
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(
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2
)

X22 =
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2
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