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In this paper, we study the nonlinear dynamics of statically deflected offshore structures undergoing vortex 

induced vibrations. We consider inclined risers that have catenary-like profiles where the riser structure is 

modelled as an Euler-Bernoulli beam with mid-plane stretching and under self-weight. The statically 

deflected structure is subjected to vortex induced vibration forces and its equation of motion is coupled with 

Van Der Pol oscillator. Then, we use mode shapes, extracted from the linear eigenvalue problem, in Galerkin 

method. This reduces the coupled system to a set of nonlinear ordinary differential equations. We use long 

time integration with Runge-Kutta method to integrate the coupled system and obtain the response while 

varying the inclination angle, internal velocity, and external velocity. The numerical results reveal the effects 

of the nonlinearity on the response of the structure, modal interaction, and resonance interactions. 
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1. Introduction 

Marine risers serve as the main link to transport oil and products in oil drilling and production 

facilities. Because of their importance, the design aspects of the riser structures have to be carefully 

studied. This is due to the fact that riser structures are subjected to different types of internal and 

external loadings as part of fluid-structure interactions and this increases the complexity of the 

design problem. The forces on the risers structure can be exerted by environmental factors, such as 

sea currents, geometrical factors, and factors induced by internal fluid flow. These forces can 

combine to generate static and dynamic stresses, such as vortex-induced vibration, which hinders 

the structural life of the riser due to fatigue damage [1]. From a structural point of view, the riser 

model is different from traditional structural beams because risers are under variable self-weight 

axial force. In addition, when the riser becomes at an inclination the self-weight force induces a 

distributed load that causes a static initial deflection of the structure [2]. In the presence of a 

nonlinear geometrical feature, the static deflection of the riser structure influences its dynamics 

producing complex dynamics such as vortex induced vibrations VIV. 

The phenomenon of vortex induced vibrations with a wake oscillator of a vertical marine riser is 

a well addressed topic in research. A complete review and listing of the relevant works are found in 
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[3-5]. As examples, we mention the early work of Nordgren [6] and Hover et al. [7] who paved the 

way to study the nonlinear dynamics of statically deflected structures. Several researches have 

considered experimental works on steel catenary risers (SCR) to study the effects of the nonlinear 

geometry on the VIV dynamics [8-11]. These results featured modal interaction and some aspects 

of travelling waves. The numerical analysis of VIV of deflected structures [12-16] showed the 

modal transition behavior as well as some signs of chaotic dynamics in the riser structure. 

The vortex-induced vibrations is a two dimensional phenomena. In the absence of a formulation 

describing the inline vortex vibrations, which is based on the oblique shedding characteristics of the 

current flow, studies are restricted to the context of cross flow vibrations. In this work we perform a 

numerical analysis on the cross flow vortex-induced vibrations of inclined structure where the 

effects of nonlinear mid-plane stretching and internal fluid are accounted for. In addition, the fluid 

forces on the riser structure are quantified using Morison formulation [17] and Van Der Pol 

oscillator to study the nonlinear dynamics of vortex-induced vibrations. 

2. Mathematical Formulation 

We consider studying the nonlinear interaction in inclined marine risers when the cross flow 

lift induces a motion in the direction of the static deflection of the riser, Fig. 1. 

 

Figure 1: Schematic of an inclined riser used in oil production extending from the platform to the blow out 

preventer for fixed-fixed configuration of the riser. 

 The riser extends from the floating unit to the blow out preventer (BOP) near the seabed. 

Based on the depth, offset, and length of the pipe, the riser pipe will statically deflect as shown in 

Fig. 1. Subsequently, the static deflection along with the lift force induced by external current flow 

will contribute to the dynamics of the riser system. The external current flow in this case is assumed 

to be orthogonal to the plane of curvature of the pipe. The riser is modeled as an Euler-Bernoulli 

beam with variable axial tension including the nonlinear mid-plane stretching effects. Hence, the 

riser equation with the effects of internal flow becomes [18, 19]  
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where ŷ is the response of the structure, x̂ is the length along the structure, t is the time,   is the 

total mass,        , where    is mass of internal fluid,    is mass of riser pipe,    is 

flexural rigidity,     is internal fluid flow,    is the applied tension,   is the inclination angle,   is 

the length of the pipe,    is the cross section area of the pipe,   is the diameter, We is the apparent 

weight of the riser,     is the external dynamic force. The tension of the pipe    is assumed to vary 

linearly with the weight of the pipe. This work is considered a subsequent analysis to the static 

solution which is solved using boundary layer perturbation using the method of matched asymptotic 

expansion [20] and the linear dynamics [21] which is studied using Galerkin method. Then, the 

nonlinear equation is written as  
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The riser is subjected to the drag and lift forces, where the first is governed by the linearized form 

of Morison equation [17] and the later is governed by Van Der Pol oscillator. The external current 

flow is assumed to be steady and uniform. These forces are written as 

 d inertia drag lift

Van Der Pol oscillatorMorison Equation

F F F F    (4) 

The expressions of each term in Eq. (4) are given by 
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where AC is the added mass coefficient, e is the density of external fluid, eA is the external area of 

the riser pipe, DC is the drag coefficient, 
0LC is the lift coefficient, eU is the external current flow. 

The inertia mass of the riser becomes         A e eC A . The description of the lift force 

using the Van Der Pol oscillator is written as [22] 
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where P and   are correction parameters obtained based on experimental results,   s is the vortex 

shedding frequency, which is governed by the external current flow. For further analysis, we 

introduce the following dimensionless variables 
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where ŷ denotes the dimensional variable and the dimensionless one is denoted by y . Substitute Eq. 

(6) into (2) we obtain 
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and Van Der Pol oscillator is given by 
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where 

 
 

0

2 43 2 2

20

2

2 42

f

L e ef p D e e

i F s s

m

C U Lm AWeSin L C DU L T LEI
U c T L

m L EI I EI EI EImEI

D m 
              (8) 

We note the presence of quadratic and cubic nonlinearities, which arise due to the nonlinear 

stretching of the riser structure. Next, we use Galerkin expansion to solve the nonlinear equation 

and assume the solution to be of the form 
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where ( )i x are the mode shapes extracted from the linear dynamics. Similarly, because of the 

synchronization between the fluid flow motion around the riser pipe and the motion of the riser 

pipe, the same Galerkin expansion of the riser can be employed in Van Der Pol Eq. (7b), which is 

expressed as 
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Solution (9) is substituted back into Eq. (7a), which yields 

 

1

1 1 1 1 1 1

2 2

1 12

1

2

0

0 0

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) (

2

2)

n n n n n n

i i i i i i i i i i i i

i i i i i i

n

i

s

s i

i

s

d y
x u t x u t x u t x u t x u t x uc dx

d

dy
T x dx

d

t
x

x
x

u t

       

 

     



    
         

     

  
    

  

   







   

 

 

2

2

0

1

1 1 1 1

ˆ( ) ( ) ( ) ( ) ( ) ( ) ) (2 ( )s s
n n n n

i i i i i i i i

i i

F

i i

dy d y
x u t x u t x u t x w t

x
dx dx

dx d
   

   

         
                   

 



    

 (11) 

 Next, we apply the orthogonality condition by multiplying Eq. (11) by ( )j x and integrating 

over the domain. This reduces Eq. (11) to 
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Also, substituting solution (10) into Eq. (7b) and applying the orthogonality condition, we obtain 
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where 2
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reduced to a set of ordinary differential equations that are coupled with the reduced Van Der Pol 

oscillator equations to form coupled systems. 

3. Numerical Results 

We use the data presented in Table 1. The parameters obtained for the forced Van Der Pol 

oscillator are   0.3  and 12P  . The nonlinear dynamic responses are studied at configurations 

θ=15
o
 and θ=75

o
. In addition, we define Strouhal relation to govern the frequency synchronization 

between the structure and the wake, which is given by 
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convergence, ten modes are used in Galerkin method while updating the temporal initial conditions 

from the previous external velocity for two applied tension cases: (a) 2  and (b)5  . 

Table 1. Properties of the riser used in the analysis. 

Property Value Property Value 

Outside Diameter, D  0.26 m Density of Riser, p  7850 Kg/m
3
 

Inside Diameter, 
iD  0.2  m Density of Sea Water, 

e  1025 Kg/m
3
 

Modulus of Elasticity, E  207 GPa Density of Internal Fluid, 
i  998 Kg/m

3
 

Depth 150 m 

 

3.1 Frequency Analysis 

The eigenvalue problem of Eq. (11) is first analysed to understand how the frequency varies 

with the applied tension and the inclined angle configuration while setting the internal velocity to 

zero ( 0  ). The frequency results are plotted in Fig. 2. 

 

Figure 2: Natural frequency results r
TT


  , norm



 . (a) First natural frequency results for 

configurations: 85
o
, 75

o
, 60

o
, 45

o
, 30

o
, 15

o
 from bottom to top respectively. (b) Lowest four frequency ratios 

at 15
o
. (c) Lowest four frequency ratios at 30

o
. 

It is noted from Fig. 2(a) the influence of the static deflection on the structure, which causes 

a decrease in the frequency values as the applied tension increases. This behavior decreases with 

increasing configuration angle (from bottom of the plot 2a to top). In addition, we note also in Fig. 

2(b) and Fig. 2(c) the commensurability of the frequency ratios, which can result into activation of 

modal interactions in the response of the structure. Because of the influence of the static deflection 

of the structure, there will be a possibility of higher order resonance activation that causes the 
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nonlinear response to become complex. This behavior is attributed to the competition between the 

mid-plane stretching and the static deflection, which induces a softening behavior similar to what 

has been reported in arches [23] and cables [24]. From a qualitative aspect, similar results were 

produced by [25] confirming the results obtained in this work. Furthermore, we note that at the 

asymptotic level for configuration 75
o
 the frequency ratio tends to integers at higher applied tension 

values. In addition, we note that the spacing between the frequency values in configuration (b) is 

small compared to the spacing in configuration (c). Because the frequencies are closely spaced, the 

activation of more than one resonance is possible.  

3.2 Nonlinear Oscillations  

Next, the response of the structure is examined by capturing the steady state response of the 

structure while varying the reduced velocity. In order to capture the effect of the symmetric and 

non-symmetric modes, the response is monitored at 0.3x  . For convergence, ten modes are used in 

Galerkin procedure. 

3.2.1 Effect of Inclination Angle 

Here, we neglect the effect of the internal velocity be setting 0  and we plot the response 

of configurations θ=15
o
 and θ=75

o
 with forward and backward sweeps of the external reduced 

velocity. The results are shown in Fig. 3 for applied tension values of 2T   and 5T  . 

 

Figure 3: Nonlinear response of the structure y versus the external reduced velocity Vr. (‘ ’); 

forward sweep, (‘ ’); backward sweep. (a) 2T  , θ=15
o
(b) 5T  , θ=15

o
(c) 2T  , θ=75

o 

(d) 5T  , θ=75
o
. 

As observed from Fig. 3, the response of the structure is dominated by the hardening behaviour. We 

note the activation of the first, second, and third resonances while sweeping around the first natural 

frequency. Note that the fundamental natural frequency corresponds to a Strouhal number of 0.2 
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and an external reduced velocity of 5. Instead, due to the close spacing between the frequencies, we 

note that the second and third natural frequencies are being activated which results into a response 

with a wider band activated at several frequencies. We note also that increasing the applied tension 

in cases (b) and (d) causes the response of the second and third natural frequency to shift away from 

the first natural frequency. From Fig. 3 we note also the modal transition responses, which lay 

outside the response of the structure. This is because of the two competing resonances, which cause 

the response to change from a periodic one to have a beating-like characteristic.  

3.2.2 Effect of Internal Velocity 

In this section, we study the influence of the internal velocity on the response characteristics 

at 2T   and θ=15
o
 and we plot the response of the structure at internal velocities of 2 / 3   

and 2 / 2  . The results are plotted in Fig. 4. 

 

Figure 4: Nonlinear response of the structure y versus the external reduced velocity Vr. (‘ ’); 

forward sweep, (‘ ’); backward sweep at 2T  , θ=15
o 
. (a) 

2 / 3   (b) 
2 / 2  . 

As noted from Fig. 4, introducing the internal velocity reduces the effect of the modal 

transition in comparison to the results plotted in Fig. 3 (a). This is due to the fact that the internal 

velocity has two effects. First, it shifts the axial force in the form of a compression force. Second, it 

introduces a gyroscopic term that couples the response of the modes. This result suggests that the 

internal velocity reduces the interaction in the modal transition regions and shifts the response 

towards a period one. 

4. Conclusion 

In this work, we presented the global nonlinear VIV dynamics response of the structure 

considering the effects of the static deflection, internal velocity, and mid-plane stretching. The 

presence of nonlinearity in the structure leads to complex dynamics involving interaction from 

several modes. These resonances can introduce non-periodic behaviours in the modal transition 

regions, which require further investigation.  
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