
 

ASYHPTOTIC AND mlucu. METHODS FOR SOLVING EURGER'S EQUATION

1?. H. Fenian

ABSTRACI

First, a review of the approximations involved in de-

riving Burger's equation from the conservation equations is given.

This discussion is then followed by an assessment of the say-mp—

totic methods which have beenused to obtain exact solutions for

particular source waveforms. Finally, nmerical and approximate

methods for_solving,5urger's equation are compared. in particular,

a technique developed by the author for replacing Burger's equa-

tion by s 'Efinpladiaet of ordinary nonlinear differential equations,

which provides a complete description of nonlinear mode conversion

for arbitrary source waveforms. is discusaed in some detail.

INTRODUCTION

(1)
As discussed by Beyer. Burger's equation, which is

well known in aerodynamics, was first introduced into acoustics by

Mendoussa(z) in 1953 for studying the propagation of finite-ampli-

tude waves. Since then it has been extensiwa analyzed by

Nausolnykh, Soluyan and Kholchlovu-e)

(7-11)

in the Soviet Union, and by

Blackstock in the United States. Thus. in order to put the

work carried out during the past eighteen years in perspective,

the major contributions, both analytical and nmrical, which have

been made to date will bebriefly reviewed, following which a tech-

nique developed by the author for solving Burger's equation with

arbitrary source waveform will be considered.

In order to introduce Burger'a equation and the asamnp-

tions on which it is based we will consider a simplified deriva—

tion of this equation from the conservation equations of mass and

mntm together with the equation of state. These equations

are shown 'in Fig. l, where o is the instantaneous density in the
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mdiun p is the instantaneous pressure. V is the particle velocity,

and the subscripts i and j are used to identify the spatial variables

in the standard notation adopted by Landau and Lifshltz(12). The

term I111 represents the nonentm—flux—density tensor, which in this

instance is quite general and includes hoth inertial and viscous

terms. The parameters 3 and A which appear in the equation-of-state

'are well known in finite-amplitude acoustics and are defined below.

Now since we are only going to include second order terms in the

equation-ofis'tite, we are therefore restricted to'Hach numbers less

than 0.1 (whid) corresponds to s sound-pressure level of 187 dB re

1 u bar in water)‘. 'Consequently, following Lighthiuu” , we can

assert thsteeven if yeah shocks are famed in the medium. the change

in entropyeaeroaii’flia shock front is of the third order in the Mach

number. and can therefore be neglected. Thus we are considering an :

essentially isentropic process, which justifies our exclusion of

the energy—balance equation. Differentiating the equation of Mass-

conservatian therefore, with respect to time. and the conservation

of mountun equation with respect to xi, and making use of the

equation of state to eliminate the pressure term, we candeduce the

general form of the second order nonlinear wave equation in a matter

of a few lines. This equation is shown in the upper portion of

Fig. 2 and below it is its one dimensional counterpart. In order

to reduce this equation wemake use of a transformation introduced

by Khokhlovul') in the analysis of electric signals on nonlinear

transndssion lines where the rate of nonlinear generation and dis—

sipation par wavelength of propagation path are asst to be small.

The essence of this transformation is represented schematically in

Pig. 3, where it is to he understood that the rste-of—ehsnge of the

waveform with respect to the spatial variable is considerably less
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than the rate—of-change ofldlo waveform with respect to the temporal

variable. Thus the result of applying the transformation. which in

the form shown is applicable when the waveform is specified as a

Emotion of time at some point in space, is that Burger's equation

can be very quickly derivedand is shown in Pig. 4 where c has been

rewritten as r for convenience. In deriving Burgor's equation from

the general second-orderdnoniinesr wave equation therefore. we have

introduced the following restrictions:

1. Lana-Mnsionsl oquaeion.

2. Progressive waves in one direction only.

However. in returnxfor these restrictions. we have gained a con—

siderahle sinplifiicstiqn. was torn si-tha wave equation. and this

is the pri'naéy ifis'iiiia'otion'for deriving Burget's equation, i.e.,

it is an approximate equation which has an extremely simple for-mI

but which nevertheless describes the physics of finite-amplitude

wave propagation (to second order) very faithfully.

A further simplification is achieved by introducing the

(9) in order tostretched coordinate system derived by Blsckstsck

represent the equation in e nondimenaionai form which is invariant

for simls which, are or “a not, subject to spreading losses.

This coordinate system is shown in Fig. 5 where, very briefly, the

index i. defines the type of spreading loss. f is a non dinensiona].

range parameter and y is a dimensionless retarded tine. 'Il'he para-

mter r0 is the plane-wave Acoustic Reynolds number whidu represents

the ratio of nonLinar forces to dissipative forces. As you can

lees, the numerator is the product of the nonlinear parameter V

B = (l + 312A) and the flash number at the source, so which reprr

at the nonlinearitias due to the equation-ot-state and the

equation-of-mtimvrespectively; whereas the terms in the denominator
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,are no. the attenuation coefficient at a d‘IRIACtEI'LEtlc source fre-

quency. and 3". a characteristic length associated with the particu-

lar source waveform. In the case of a C" source the characteristic

length rL is chasm as the inverse of the source wayenumber. For

signals subject to spreading losses the plane-wave Acoustic Reynolds

number is modified as shown in the Table (Fig. 5).

In terms of this notation therefore, Burger's equation

takes the form shown in Fig. 6, where capital V is now dimensionless,

.and the onl‘y.3‘additienal'-‘Kestrictloo.Vover snd'above those already

,mntioned. is that for signals undergoing cylindrical or spherical

 

spreading l :, eat-122mg: (Ir/ry'.) ; 1. Now the plane wave

form of this_non-dimnsional equation is shown in Pig. 7. where o

representsi’tbe diinnaionleas range parameter in this instance. As

(2) (1)
shown by Hendousse and discussed by Beyer this equation can

be reduced to the form of the linear heat conduction equation by

(15). Coleus) transformation shown in Fig. 7.mans of the Hopf

Thus. an exact analytical solution of the form shown here can be

derived. but as will be mentioned later on. this solution is only

peripherally useful. and in the above form it is restricted to CH

islpflh. Although solutions can be obtained in this manner for

more general source waveforms. they become increasingly cumbersome

to evaluate.

Turning now to the exact analytical solutions which have

been derived to-date. we state at the outset that with one exception

these are only available for Clvl signals- To begin with therefore.

we consider the solutions of the losslesa equation which are ob-

tained by setting the Acoustic Reynolds lumber equal to infinity.

New in a lossless medium we know from physical considerations thot

a plane—plane wave of finite—amplitude at the source must become
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increasingly distorted as it propagates through the medium Intil

leventually enough harmonics are mentor] and shock formation occur»,

-He can therefore consider the propagation history of such a signal

_tn consist of two zones, 1 and II. where Zone I exists from the

1source to the point at which shock formation occurs, and Zone 11

is the domain where the waveform has n sawtooth profile. The loss-

lees Zone i solutions are shown in Fig. 8. where as previously

stated the signal is CH. The tire waveform has the denial

(E) In?! Entfuflsnonyggvsrhntgygighedded in the

 

Riemann fom

 

argument. Bymaking a harmonic analysis of this solution Hargroveua)

obtained theszubiunspecrul distribnsmu” or as Blackstoek has

called it. the "Bessel-Mini solution

 

thislsolution is of ah-t‘on't‘inlually distorting

waveform we can readily find its range of validity. i.e., the ex—

tent of Zone I. by determining the range at which the derivative

with respect to y (which is the dimensionless retarded time)

approaches infinity - this occurs when the disionless range

parameter f is equal to mlty. He can thus determine the dimension-

al range at which shock formation occurs as a function of the source

frequency and Mach number from the conversion table of Fig. 5.

Another method for obtaining the lossless Zone I solution,

(20)
due to Banta . is shown in Fig. 9 where the normalized particle

velocity is expressed as a Taylor series, and D: is the s:h deriva-

(20) has shown, this can he re-tive with respect to f. As Banta

: duced to an elegant operational form outlined in Fig. 9, by means

of which the Bessel-Fuhini solution can be derived for a CH simal.

Using this operational solution the author was able to obtain the

lassless Zone I parametric spectrum for a source waveform with two

frequency componentsal) which is shown in Fig. 10. The parametric
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time-waveform solution is also shown together with the dimnsionlass

critical range and its dimensional counterpart. It should be noted

that for small values of V01 and V02 the spectral representation for

the plane wave case can be reduced to the form of an approximate

solution derived by Naugolnykh. Soluyan and nouuv.(°) I

So much for the losslesa Zone I solutions. in Pig. ll we

see the lossless Zone 11 solution derived by Nausolnykh“), Hester-

veltu). and Rucksack”) where V» reprasalts the nomllted

peak amplitude at the spreading distance. to. Essentially. this

solution is readily obtained from physical considerations since we

know that the waveform in this zone has a periodic sawtooth Earn,

A(u-y) between -1r and n. (where A la a parameter which depends on

f). and thus by substituting this solution in the lessless form of

Bursar's equation the parameter A is easily derived. so that the

solution has the form shown. An asymptotic relationship between

the lussless Zone I and 1! solutions obtained by Blackstockuo) is

shown in Fig. 12, for the fundamental harmonic component. 51.

Having obtained the lossless solution for Zones 1 and II, we can

very quickly obtain the with more interesting Zone 1! solution for

a viscous medium. by means of an asymptotic technique-used by

(5) in their analysis of spheri-Naugolnykh, Soluyan and Khokhlov

cally spreading finite—amplitude waves. his is shown in Fig. '13

where the derivation is as follows: Let us assume the existence

of a wave of permanent profile. i.e.. a wave uhich is independent

of variations in the spatial derivatives. If such a wave exists.

its functional form can be determined by equating the spatial-

detivative in Burger‘s equationto zero and then solving the equa—

tion thus formed. The solution of this reduced equation, known as

the "dynamic-steady-state" (d.s.s.) solution has the form shown,
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where C is an undetermined parameter. and of course 1‘ is the

:Acoustic Reynolds number, which as previously mentioned is the ratio:

'of nonlinear forces to dissipative forces. It the medium was loss—

Yless this d.s.s. solution would have to relax asymptotically to the

Ilossless Zone [I solution which we have just considered. Thus by

equating 1‘ to infinity (i.e. zero viscosity) and y equal to zero

we find that the d.s.s. solution is reduced to the constant C which

'in turn must be equal to the lossless Zone ll solution at y - 0,

which is nub-E). ' ‘lh'us‘c has been' determined;;and by adding an

additional term — y/(1+f) to the d.s.s. solution we obtain the

exact particular—solution of Burger's equation, shown in Fig. 13,

which was first derived by Soluyan and Khokhlov.(3) Soluyan and

Khnkhlovu) originally’obtainsd this solution by applying the

method of stationary phase to the integral solution of the heat

conduction equation obtained by means of the Hopf—Cole transform-

tion previously discussed. Making a harmonic analysis of the Soluyan

5 Khokhlov, (3) solution we thus obtain the spectrum derived in—

dependently by Fay(23) in 1931. which is valid for 1‘0 >> 1. Before

considering the conditions for the existence of this viscous Zone [I

solution we can smarize the sequence of contributions which have

been discussed. as shown in Fig. 1A. where you can see that the

Soluyan and molthlov time-waveform solution can be derived from

the d.s.s. solution via the asymptoric matching procedure, just

discussed, or via the asymptotic integral evaluation employed by

Soluyan and Khokhlov themselves. A Fourier analysis of this solu-

tion thus gives the Fay spectrum. Alternately, since the Pay

spectrum can also be derived from the linear heat conduction equa-

tion. as shown by Blackstockul) we can then make an inverse

Fourier analysis of this spectrum and obtain the Soluyan and
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nokhlov time waveform. A comparison of the lossless and viscous

Zone 1! waveforms is shown in Fig. 15. where it is clear that the

effect of dissipation is simply to round off the corners of the

waveform thus causing the shock front to have a finite thickness 51,.

Now the shock thickness 51. can be derived from the Soloysn and

xhokhlov solution. and since it must be less Chain one period of the

waveform, Elackstockul) erbitrarily defined the uppe: 11ml: of st

' to be N 2n/5, i.e.. if ST exceeds this value then the tone [I solu;

tion is inapplicable. This is ’ahowninl‘igfidbvand consequently,

according to Blackstockul) (26)and Cary the Acoustic Reynolds num-

ber must sistisfy the‘inequality outlin’e'd below. We can thus deter-

mine the extent of. >Zone 11, if it exists. by calculating the value

of the dimensionless range fs which just satisfies the equality.

For values of f greater than is the inequality is violated. Like-

wiseI since we know from the lossless Zone 1 solution for a CH sig—

nal that the onset of Zone it occurs when the dimensionless range

peimecee f is equsl 'to unity we can thus select a somewhat larger

‘vslue of E such as i/Z to determine the onset of Zone u in a dis—

sipatiVe medium - a choice which Blackstock found was compatible

with a numerical analysis of the exact solution of Eurger's equation

derived by He'udouésesl) ohich we previously discussed. Inserting

this venue of E ii: the inequality therefore,

Can-ya“ obtained a criterion for the onset of shock formation (or

the existence of Zone 11) which is one of the most useful results

obtained from the solution of Burger's equation. This criterion,

expressed in terms of’ dimensional parameters, is shown in fig. 17-,

end in this fo‘fin we can use it to predict the source sound pt'es'su'r'e

level which will cause shock formation to occur for s C" source of

given frequency and aperture dimensions. This result of the theory
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has been discussed by Smith and Berktast-h believe. and in Fig. l8

we see the criterion represented graphically for siyala subject to

spherical spreading loss in the form of curves of SPL at the Rayleigh

distance vs frequency for three different source diameters These

curves were computed for fresh water with the small signal attenua-

tion coefficient shown. Points above these curves correspond to

sound pressure levels and frequencies sufficient to cause the occur-

tence of shock formation beyond the Rayleigh distance for the par-

ticular source frequencies and diameters considered. Points on the

curves represent threshold values, and points below the curves rep—

resent values of SN. and frequency which are not sufficient to cause

the onset of shock formation beyond the spreading distance. Of

course plane wave shock formation may occur within the spreading

distance for a particular CH source and the possibility of this

occurrence can be determined by examining the ratio of the critical

range at which shock formation occurs to the spreading distance -

evaluated as a function of source diameter and frequency. This

ratio of critical range to spreading distance for a CH source in

fresh water is shown in Fig. 19, and it is clear that if-the ratio

exceeds unity then shock formation can only occur beyond the Ray-

leigh distance for the particular frequencies and source diameters

under consideration. Another useful result of the analytical ex-

pressions which we have just considered is that they can be used to

predict the amount of finite—amplitude attenuation suffered by a

CH sipal in generating a harmonic spectrum during its course of

propagation through the radium. This has been discussed in detail

by Hlackstockul), Can-‘2") and by Smith and Berktayus) so that

we can pass on to the next topic which is concerned with the numer-

ical solution of Burger‘s equation. Summarizing what has been
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aecoalpliohecl analytically therefore. we have seen that exact Zone 1

solutions of the loasleas Burger's equation are available for CH

sipals and for more general waveform. However. Zone [1 solutions

have only been obtained for 01 sipals.

Even if such solutions are obtained they will still have

to be supplemented by numerical analysis for the case of completely

arbitrary source waveforms. I should mantion at this point that

Naugolnykh, Soluyan and anemia“) and independently the authorun

have applied the mthod of successive approximations to obtain

approximate solutions of Burger's equation for the case of parametric

interactions between CH signals and the self interaction of ampli-

tude modulated waves. Sum of these solutions will he briefly re-

ferred to later on in this talk. Thus, passing on to Fig. 20 we

have an encapsulated summary of the numerical methods applied to

Burger's equation prior to 1910.

The first nunerical solution of note is due to Biackstocltu'n

who made a numerical harmonic analysis of the Bopf-Cols-HendousseU)

exact plane-wave-solution for GI signals, which we previously dis-

cussed. in order to evaluate the spectral amplitudes as a function

of mass. This analysis was performed with increasing values of

the Acoustic Reynolds number re, and as Blackstock discovered, the

numerical accuracy seriously deteriorated for values of r0 greater

than fifty. This was primarily due to the slow convergence and al—

ternsting sips of the terms of the Bessel-Function series in the

numrator and denominator of the quotient (see Fig. 7). Consequently,

harmonic analysis of exact solutions of this form cannot be recom-

mended. particulsrly as they beconn increasingly complicated when

the source waveform contains more than one frequency component.
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The next application of numerical methods to a more general

form of Burger's equation which included dispersive terms, was carried

(23) who used a finite—difference meshout by Harsh. Kellen. and Konrad

to replace equation by a set of linear algebraic equations which

were then solved on a digital computer by standard Matrix procedures.

in order to decrease the computation time required to obtain

(2‘) ‘ extended thesolutions via finite-difference spproadmations, Cary

technique which had been applied by Banta to the solution of the less—

less Burger's equatim, which we considered earlier on. This method,

originally due to Lagrange, consists in expanding the normalized par-

ticle velocity in a Taylor series as shown, and then obtaining analyti-V

asl expressions for the derivatives which appear in this series via

the differentialgequation. I should point out that ii (subscript i) I

represents the value of f at the ith field point and the increment

if in the Taylor series represents the dimensionless spatial distance

between two field points. Once again D; represents the sth deriva-

tive with respect to f, and in this notation Burger's equation has

been reexpressed as shown. Looking at the equation in this form it

is immediately evident that the first derivative with respect to 5

which appears in the Taylor series is given by Burgsr's equation it-

self in terms of derivatives of V with respect to y. Thus, if we

are given the waveform as a function of time at some point in space,

which could. but need not be. the source itself. we can compute the

first derivative with respect to f at this point by differentiating

the waveform with respect to y the required number of times and in-

serting these derivatives in the terms on the right hand side of the

equation. In order to obtain algebraic relationships for the higher

derivatives with respect to f in terms of derivatives with respect

to y, which we can compute, we differentiate Burger's equation with

32

 



 

respect to f and replace all terms on the right-hand-side which. con-

tain the first derivative with respect to f with the right-hand-side

of the previous equation. in this manner the second derivative with

respect to V is obtained in tern-5 of derivatives with respect to y.

Continuing in this manner the higher derivatives with . '(Bc! to f

can be expressed recursively in terms of dm [vol ims with respect to _

y, although the degree of Cmnplcley Increase: with mc'n successive

i derivative. making it impracLical to go beyond llu: sixth order.

However, the advantage gained in us Lug mori- rlmu I‘m-x.- derivatives

in the Taylor series is char ir pen-ms largL‘!‘ in mum in cf

 

to be used, than would be required for convergunm with .1 finite-

difference mesh, which only makes use of the first two terms in the

Taylor series as the basis for approximating the derivatives. Once

expressions for the f derivatives have been obtained therefore, in

terms of y derivatives, they can be readily programmed, and once

the time waveform has been specified at some field-point all of

the subsequent calculations can easily be carried out on a digital

computer. Thus, if we are only interested in computing the time

waveform of a finite-amplitude signal as it propagates through the

medium this method can be very useful. It can also be readily ex-

tended to the case of a dispersive medium as shown by Cary and

Fenian?” The method does have its disadvantages however, especially

if one is primarily interested in computing the spectral levels of

the nonlinearly generated harmonics as the signal propagates through

the medium. These disadvannugmi are related to the required numerical

operations which are briefly

 

aarized in Fig. 21.

As an alternative ru this method, the authoran found it

preferable to express the normalized particle velocity as a Fourier
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NUMERICAL OPERATIONS REQUIRED

1. Source Waveform Sampled at the Nyquisi Rate

2. Filter to Remove Spurious Harmonics Above the

cut - off Frequency

3. Numerical Differentiation

4. Numerical Harmonic Analysis

Fig. 21

 



 

  
  

series. shown in Fig. 12. which enables Burger's equation to he re-

placed by a coupled set of ordinary nonlinear differential equations

with the spectral amplitudes as the dependent variables. In this

set of equations the spectral amplitudes are complex, Ind the term

Vial V‘ln represents the self-convolution of the signal frequency

space. Since the solution of these coupled equations have been dis-

cussed elaewhereun the method-oE-solntim is only very briefly

v outlined in Fig. 23. Here we see the coupled-modal form of Burger‘s

equation written out again, and below it we see the spectral ampli-

tudes expressed as a Taylor series, where the matrix (12,1 represents

the i derivatives as shown. Using the same technique applied in the

Basra-Cary method we can thus obtain an expression for the nth deriva-

tive with respect to f in terms of the (n-l.)"'h derivative. which in

this instance results in the general recurrence relationship shown

below. I might just add that it is preferable to use a Taylor

series expansion rather than a power series to represent the spectral

amplitudes when the Acoustic Reynolds number is a function of f (as

it is when we have cylindrical or spherical spreading) because it

turns out that in this instance we can take repeated derivatives of

1‘_1 (f) with respect to i rather than having to represent rd (2)

as a power series which would otherwise be required. The advantages

of the recurrence technique are sumarized in Fig. 26,

A further developnent of this technique for computing the

transient response of signals can now be readily implemented. Thus,

in Fig. 25 we see, for simplicity. the momlued pineal-we form

of Burger's equation in terms of the dimensional variables v. r. and

r, and below it we see the particle velocity srpressod as the inverse

Fourier transform of its spectrum. “hen the latter is inserted in

Burger's equation therefore, we obtain an equation for the spectral
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2. Arbitrary Source Waveforms of Finite Duration in the IDomain

Dug. 292MB}

ADVANTAGES OF THE RECURRENCE RELATIONSHlP

Periodic Source Waveforms with Vii 0,-1) = -V(f°. 1i

Eliminates Waveform Sampling

Eliminates Filtering the Source Waveform

Eliminates Numerical Differentiation

Eliminates Numerical Harmonic Analysis

Eliminates Numerical Differentiation

Eliminates Numerical Spectral Analysis

Fig. 24
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amplitudes, which as bafore, includes the self-convolution of the

signal. But since the latter is equal to the Fourier Transform of the

signal squared, it is immediately obvious that we can make use of the

powerful machinery of digital signal processing which utilizes the

Fast Fourier Transform (F.F.T.) algoritl'm: to rapidly switch from

'the time waveform to the spectrum as the solution is obtained at

each incremental distance from the source. In order to use the

F.F.T. it is of course necessary to sample the spectrum at a rate

which depends upon the number of significant spectral components

generated during the course of propagation through the medirml.

Usually this can he estimated from experience and a consistency check

can be readily made using a different sampling rate. Now you will

notice that the coupled modal form of Burger's equation enables us

to immediately express the finite—amplitude attenuation coefficient,

in terms of its small signal value together with an additional term

which is the self—convolution of the signal divided by the spectral

vector. Thus, when all the significant spectral components have been

formed by means of the recurrence relationship, this expression for

the finite—amplitude attenuation coefficient which is shown in Fig. 2b.

can he used to compute the spectrum at all subsequent values of range.

In general, this method requires the use of a smaller spatial increment

of, which implies a slower rate-of-convergence. on the other handI

since it only requires the evaluation of a single emanation (integral)

compared with the double summation which appears in the recurrence

relationship, the computation time required is considerably reduced.

Note that in the last few diagrams the equations have been shown

in dimensional form, and only for the plane wave case. This was done

merely to simplify the presentation, since Blackstock's stretched

coordinate system must be modified slightly when we are dealing

with the transient response of finite-amplitude signals. 1 wish to

mphasize this point because when performing numerical calculations
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it is preferable to work with the equations in nondimensional form.

As an example of the use of the numerical computational procedure

Fig. 27 show- u calculation of the normalized fundanental

component of a plane CH signal plotted as a function of normalized

range for increasing values of the Acoustic Reynolds number. These

calculations were made to check the accuracy of the procedure by com-

(30) Cook'sao)
parison with a similar set of curves computed by Cook.

numerical technique I might add is not based on the use ofBurger's

equation and depends a: a phenomenological representation of the

term which on the previous slide we identified as the self-convolution

of the signal in frequency space. Thus. although Cook'sao) method

appears to give useful results for plane CH signals it is not clear

how it can be extended to deal with more general waveforms. The com-

puted results shown in this slide agree to within graphical accuracy

with Cook's results. and as you can see the result of f1nlte~amplitude

attenuation is that source saturation occurs as the Acoustic Reynolds

number increases - which is consistent with the plane-wave finite-

amplitude results obtained by Blackstockul). r13. 23 shows the

variation of second harmonic levels relative to the fundamental as

a function of range, for the same values of the Acoustic Reynolds

amber. Once again, these computed results agree with those of Cook

to within graphical accuracy and the same is true of the higher har—

monic components. of course, I wish to emphasize again that this is

only an example which was used to check the accuracy of the computa-

tional procedure. This procedure then, is outlined schematically in

the form of a block diagram in Fig. 19 which is self-explanatory.

Thus withthe use of the F.F.1'. algorithm the transient response of

arbitrary source waveforms. such as coded pulses can readily be evaluated

as a function of distance from the source. Finally, I would like to
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discuss the transient solution obtained by applying the method—of-Suc-

cessive-approzdmations to the coupled-modal farm of burger's equation.

This is shown in Fig. 30 where spreading losses have been excluded

to simplify the presentation. Now the first-order-approximatian is

obtained by neglecting the self—convolution term, and the second-order-

npproximation is then obtained by substituting the first—arder-approxi-

nation in the self—convolution term as shown and then solving the re-

sulting equation to give the solution outlined below.

If we consider the case of parametric interaction between

two cw pulses of finite—amplitude. and neglect the influence of all

other spectral components on the difference—frequency pulse spectrum —

a simplification which is consistent with the accuracy of the second—

qrdef—approfimaflion —we can obtain the far field transient response for

the difference-frequency signal as shown in Fig. 31 which is identical

(:1) and in Fig. 32 we see the same
to that derived by Muir and Blue.

spectrum when the effect of spreading loss is included for the para-

metrically generated difference—'frequency signal. where the spreading

distance rm:l is represented by the Rayleigh distance which is given

by kodsollm for a circular piston in a rigid baffle.

The first term inthis solution has the well known functional form

(32) The solution assums of course
originally derived by Uestervelt.

that the primary signals are not subject to spreading. i.e., that

parametric interaction takes place within the Fresnel zone of the

primary signals.

In conclusion therefore, we have seenthat the coupled—modal

form of Eurger's equation and the resulting expression for the finite-

amplitude attenuation coefficient, form the basis of a general proce-

dure for evaluating the spectral interactions of the progressive

finite-amplitude signals of arbitrary spectral compoeition at the

  



 

Dug‘ 2911175

SUCCESSIVE APPROXIMAIION (PLANE ' WAVE EXAMPLE] 2'

a? '. . 2 ‘ ‘_d—r + Gnu-UV (JEN/2C0] V‘ V—O

Hence v(1'[r,u;=§ (a. LI) swam '

mg?“+ ( ~m_l, z a" .~ .I" no ulv —‘Bula:ol V(a,ulv(u,u-upe

'41:

-a (9') wlu-u') r
{° '“ }du'/27I

x
-z -0 M r - ~ ~

Henm/ ’(r,u1 =e " V(o,u|-ljBu/Zc;| V(0,|I'IV(o.u-u‘!0(r,u,'uldu'.m

up [‘{un Iu') na 0: - u' I}r]- exp [-an In] r]

wnmon'” m: 21: now) mam-ob -

 

Hg 30

Ilv(o,1l =[u4tm -U(t-n][vm cos ulr+v02ms 921]

and no] r >>l, u02r>>l, with Floyd! =0

 

~ ~qu an ~~ _a (an
Ihenv'z’tr,u)- ‘1 fvto,u)vro,u-u'mu' e ° ‘1a 2 a

Menu]. -u=

. +
(ad and) (“d-MI D

= Bv-IdvmvDz e-aotud)r[sinlud_-Uole sin (udwwt 1]

od
2MenuT

- where 00 = [Bl-U2), and aa 1:“01+“oz'“oa

Fig. 31

mag. 251mm

INTRODUCING SPREADING LOSS,

~ 'od CHUVOIVOZ> 5‘" “‘d ' “on” 5‘“ “a *“oa”:| “no '

 

V1r,u = —— — —_— + e
d MCEHT (ad and) ("dd-U d)

2
SBuV V I .

- o [1203102 [sincmd-uodn +sinctud+u )Tle “our
1616 r Wour

k S
_ d o =

Whererod— A" .andS‘J 1ra

 



 

source. as A function of range. And the attrecrtve feature of this

procedure 15 that it can be applied mutually or analytically de—

pending an the degree of complexlty involved.
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