ASYMPTOTIC AND NIMERICAL METHODS FOR SOLVING BURGER'S EQUATION

F. H. Fenlon

ABSTRACT

FPirst, a review of the approximations involved in de-
riving Burger's equation from the conservatlon equations 1s given.
This discussion is then followed by an assessment of the asymp-
totic mathods which have been used to obtain exact selutions for
particular source waveforms. Finally, numerical and approximate
methods f-o_'l_'__s_m'lvin; Burger's equation are compared. In particular,
a technique developed by the author for replacing Burger's equa-
tion by a Eoupled aet of ordinary nonlinear differeatial equatioms,
which provides a cample:e description of nomlinear mode counversion

for arhitraty source uaveforms is discussed in some detail.

INTRODUCTION

(1)

As discussed by Beyer, Burger's equation; which is

weil kunown in aerodynamics, was first introduced iato acoustics by
Hendousaa(z) in 1953 for studying the propagation of finite-ampli-
tude waves. Since then it has been extensively analyzed by

Naugolnykh, Soluyan and Khok.hlovu—ﬁ)

(7-11)

in the Sovier Union, and by
Blackstock in the United States. Thus, in order to put the
work carried out during the past eighteen years in perapectl\re,-
the major contributiona, both analytical and mumerical, which have
been made to date will be briefly reviewed, following vhich a tech-
nique developed by the suthor for solving Burger's equatiom with
arbitrary source waveforms will be considered.

In order to lntroduce Burger's equation and the assump-
tions on which it is based we will consider a simplified deriva-
tion of this equstion from the conservation equations of mass and
momentum together with the equation of state. These equations

are shown in Fig. 1, where p is the inatantaneous density In the
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mediun p Ls the instantancoys pressure, v 1s the particle velocity,
and the subgeripts i and j are used to ildencify the spatial variables

in the standard notation adopted by Landau and Li.fshl.:z(u).

The
term nij tepresents the momentum-flux-density tensor, which in this
instance is quite general and iqcludes both inertial and viacous
terms. The parameters B and A which appear in the equatiom-of-state
‘are well known in flaite-amplitude acoustica and are defined below.
How since we are anly going to include second order terms in the
equation-oftgtate, wé ate .thereford restricted to Mach mumbers less
‘than 0.1 {which corresponds to a sound-pressure level of 187 dB re

1 u bar in water). Comsequently, fnilowing Ligh:h111(13)

, we can
assert that .even if weak shocks are formed in the medium, the change
in entropy-scroai ilie shock front is of the third order in the Mach
number, and can therefore be neglected. Thus we are considering an .
essentiaily isentropic process, which justifies our exclusion of

the energy-balance equation. Differentiating the equation of Mass-

conservation therefore, with respect to timeé, and the comservation

of momentum equation with respect to x, and making use of the

equation of state to eliminate the pressure term, we can deduce the
general form of the second order nonlinear wave equation in a matter
of a few lines. This equation is shown in the upper portion of

Fig. 2 and below it is its one dimensional counterpart. In order
to reduce this equation we make use of a transformation introduced

by Khokhlov‘l®

in the malysis of electric signsls on nonlinear
transmission lines where the rate of nonlinear generation and dis-
sipation per wavelength of propagation path are assumed to be small.
The essence of this transformation is represented schematically in

r:lé. 3, where it ia to be understood that the rate-of-change of the

waveform with respect to the spatial varlable is considerably less
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than the rate—of-change ofutha wavaform with respect to the temporal

variable. Thus the result of applying the transformation, vhich in
the form shown is applicable when the waveform is specified as &
function of time at sewe point in space, is that Burger's equation
can be very quickly derived and is shown in Fig. 4 where { has been
rewritten as r for convenience. Ia deriving Burger's equation from
the general second-order-ncnlinear vave equation therefore, we have
introduced the following restrictiona:

1. A.oné.Becodionzd squatlon.

2. Progressive waves in cme direction only.
However, in i‘e:um.'fdr these restrictions, we have gained a con-
.giderable eimplification in-fhe form of .the wawe equation, and this
i3 the primary Josit¥ieation for deriving Burger's equatiom, l.e.,
j.l'. is @n approximate equatlon which has extremely simple form,
but which nevertheless describes the physics of finite-amplitude
wave propagation (to second order) very fa.lthft.illy.

A further simplification is schieved by introducing the

) in crder to

atretched coordinate system ‘darived by Blackstock
repregent the equation in a nondimensiomal form which 13 invariant
for signals which, are or are not, subject to spreading losses.

This cooidinate system is shown in Fig. 5 where, very briefly, the
index & definea the type of spreading loms, f is a nen dimensional
range parameter and y is a dimensionless retarded time. ;rhe para-
meter ro is the plane-wave Acoustic Reynolds number which representa
the ratio of nonlinear forces to dissipative forces. As you cam
Eaee, the numerator is the product of the nunlin;eal; parameter '

@ = (1 + B/2A) and the Mach oumber ac the source, &  which repre-
sent the nonlinearities due to tha equation-of-atate and the

equation-of-motion respectively; whereas the terms in the denominatqr
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(are a_, the attenustion coefficient at a characteristic source fre-

quency, and I, 3 characteristic length assoclated with the particu-
lar source waveform. In the case of a CW source the characteristic
length T is chosen as the inverge of the source wa;euumber. For
signals subject to spreading losses the plane-wave Acoustic Reynolds
aunber is modified as shown in the Table (Fig. 5).

In terms ¢f this notation therefore, Burger's equation
takes the form shown in Fig. &, vhere capital V is now dimensionless,
iand the onry,}‘additiml'-tea:r;ctian, _over and  above those already
_mentioned, is that for signals undergeing cylindrical or spherical
spreading i;:'ig-é:, Ge"féqui;é ‘that (.1'11-"_) 5> 1. Now the plane wave
form of thj_.lg;‘:_g:onfc‘i‘iin_lan_simal equation is shown ian Fig. 7, where o
represents.the dimansionless range parameter in this instance. As

(2) (1)

shown by Mendousse and discussed by Beyer this equation can

be reduced to the form of the linear heat conduction equation by

(15) f Coleue)

means of the Hopf trangformation shown in Fig. 7.
Thus, an exact analytical solution of the form shown here can be
derived, but as will be mentioned later on, this solution is only
peripherally useful, and in the above form it is restricted to CW
;sisnals. Althoug-h solutions can be cbtained in this manner for
more gemeral source waveforms, they become increasingly cumbersome
to evaluate.

Turning now to the exact amalytical solutions Hhicﬁ have
been derived to-date, we state at the outset that with one exceptign
these are only available for (W signale. To begin with therefoye,
we consider the solutions of the lossless equation which are ob=-
tained by setting the Acoustic Reynolds number equal to infinity,

Kow in a losslens medium we' inow from physical comsiderations thgt

a plane-plane wave of finire-amplitude at the source must become
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r————
increasingly disteorted as it propagates through the medium until

ievenl:ua.lly enough harmonics are generated and shock formation occura:

:We can therefore consider the propagation history of such a signal

_to conslat of two zones, I and II, where ch'm I exists from the

! . .
"source to the po:ui: at which shock formation occurs, aud Zone II
is the domain where the waveform has a aawtooth profii.e. The lozs-
leas Zone I solutions are showm in Fig. 8, where as previously
stated the signal is CW. The time waveform has the classical
Riemann form:i” eith the fungiion;invartentiysighedded 1o the

argument. By wmaking a harmonic analysis of this solutiem Hargrova(la)

cbtained the:Pubint:gpectral digg‘yibggmu” or as Blackatock has

called irt, the "Beaael—l‘uhini solut:l.an .

Si.u:e :h:l.s golur,iou s :ha: of a cun:inuany distorting
waveform we can readily find its range of validity, i.e., the ex-
tent of Zone I, by determining the range at which the derivative

with respect to y (which is the dimensionless retarded time}

approaches infinity - this occurs vhen the dimensionless range
parameter f is equal to unity. We can thus determine the dimension-
al range at which shock formation cccurs as a function of the source
frequency and Mach number from the conversion table of Fig. 5.
Ancother method for obtaining the lossless Zone I solutioa,

(20)

due to Banta , is shown in Fig. 9 where the norwmalized particle

veloclty is expressed as a Taylor series, and D: is the s:h deriva-

tive with respect to f. As Ba.nta(m)

has shown, this can be re-

duced to an elegant operational form outlined in Fig. 9, by means
of which the Bessel-Fubini solution c¢an be derived for a CW signal.
Using this operational scluticm the author was able to obtain the

lossless Zone I parametric spectrum for a source waveform with two

frequency compunents(zn which 18 shown in Fig. 10. The parametric
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time-waveform solution Ls alse shown togethar with the dimensionlass

critical range and its dimensional counterpart. IE should be noted
that for small values of Vo1 and Voz the speactral representstien for
the plane wave case can be reduced to the Eqrm of an approximate
golution derived by Naugolaykh, Soluyam and Khokhlov.(6).
S0 much Eor the lomsless Zone I solutions. In Fig. 1l we
see the lossless Zome 11 solution daftvad by Naugolnykh(é). Wester-
) vell.'(z), and Blacka:ock.(” wvhere vpo represents the normalirzed
peak amplitude at the spreading distenca, ¥,. Essentially, this
golution is veadily obtained from physical congidarations since we
know that the waveformlin this zone has a périndic sawtooth form,
Alm-y) batween -7 and m, (where & is a parameter which depends on
f), and thus by eubatituting this solution in the lé;sless form of
Burger's equation the parameter A 1s easlly derlved; 8o that the
solution has the form shown. An asymptotic :alntin;ship between
the lossless Zome I and II solutions obtained by BlacEa:ock(ln) is
shown in Fig. 12, for the fundamental harmenic componeat, Bl'
Having obtained the lossless solution for Zones I end II, we can
very quickly obtain the much more interesting Zone Il solution for
a viscous medium, by means of an aaymptotic technique.used by

Naugolnykh, Soluyan and Khokhlov‘s)

in their analysis of spheri-
cally spreading finite-amplitude waves. This 1s shewn in Fig. 13
where the derivation is as follows: Let us agsgume the existence
of a wave of permanent profile, i.e., a wave vhich is independent
of variations ia the spatial derivatives. If such a wave exists,
irs functional form can be determined by equating the spatial-
derivative in Burger's equation to zera and then sclving the equa-

tion thus formed. The solution of this reduced equation, knowm as

the "dynamic~steady-state” (d.s.s.) solution has the form showm,

&7
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where C 1s an undetermined parameter, and of course I' is the
.Acoustic Reymolds aumber, which as previously mentiocned ias the ratio:
‘of nonlinear forces to diasipative forces. If the medium was loss-
'1ess this d.s.s. solution would have to relax asymptotically to the
.lossless Zone II solution which we have just considered. Thus by
‘equating T to infinity (i.e. zero viscosity) amd y equél to zero

we find that the d.s.s. solution is reduced to the constant C which
.1u turn wust be equal to the lossless Zone II solutiom at y = O,
which is #/(1+E).  ‘Thus“C has been determined, and by adding an
addirfonal term - y/{1+f} to the d.s.s., sclution we obtain the

exact particﬁiarnééiution of Burgér's'eidation, shown in Fig. 13,

which was first derived by Soluyan and Khokhlog.(3)

Soluyan and
Khakhluv(a) originally obtained this selution by applying the

method of stationary phase to the integral solution of the heat

conduction equation obtained by means of the Hopf-Cole transforma-

tion previously discussed. Making a harmonic analyeis of the Soluyan
(&))

golutfon we thus obtain the spectrum derived in-—
{23)

& Kholkhlov,
dependently by Fay in 1931, which is valld for Fo »» 1, Before
considering the conditions for the existence of this viscous Zone II
solution we can summarize the sequence of contribution® which have
been discussed, as shown in Fig. 14, where you can see that the
Soluyan and Khokhlov time-waveform solution can be derived from

the d.s.s. selution via the asymptotic matching procedure, just
discussed, or via the asymptotic integral e¢valuation employed by
Soluyan and Khokhlov themselves. A Fourier analysis of this solu-
tion thus gives the Fay spectrum. Alternately, since the Fay
spectrum can also be derived from the linear heat conductiom equa-

tion, as shown by Blackstock(ll) we can then make an inverse

Fourier amalysis of this spectrum and obtain the Soluyan and

n
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Ehokhlov time waveform. A comparison of the lossless and viscous
Zon> 1l waveforms is shown in Fig. 15, where it is clear that the
affect of dissipation is simply to rownd off the cdiners of the
waveform thus causing the shock fromt to have a finite thiclmens Sf.
Now the shock thickness S, can be derived from the Soloyan and
Khokhlov solution, and since it must be less thaa cme period of the
waveform, Blacks:ack(ll) arbitrarily defined thé upper limit of ST
‘to be ~ 2n/5, i.e., if §; exceeds this value then the Zone II solu=
tion iz inspplicable. This 1e showm.in Fig.-16 .and coasequently,

(L1 (26) the Acoustic Reynolds aoum=

according to Blackstock aud Cary
ber must éétiéfy the inequality outlined below. We can thus deker-
wine the extent of Zoue i1, if it exisks, by calculating the value
of the diménsionleds rangé _ which Jjust satisfies the equallty.

For values of f greatéf than fs the inequality 18 violated. Like-
wise, since we know from the lossless Zone I solution for a CW sig-
nél that the onset of Zone Il occurs when the dimensionless range
pafametetr £ 1s equal to uhicy we can thus select a somewhat larger
yalie of £ such as 7/2 io determine the ¢nset of Zome I1 in a dis=
glpacive mediue - a choice which Blackstock found was compatible
with a numerical analysis of the exact solutiom of Burger's equation
derived by HeﬁdauéaéGZ} which we previously discussed. Inserting
this value of f 1n the inequality therefore,

Cary(za) obtained a criterion for the onset of shock formation (ot
the existence of Zone II) which is one of the moat useful results
obtained from the sclution of Burger's equation. This criterion,
expressed in terms of'dimensional parameters, is shown in Fig. 17,
and in this form we can use it to predict the source sound .pEESBui:'e

level which will cause shock formatioﬁ to occur for a CW soutce of

given frequency and aperture dimensions. This result of the theory
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CZS)I believe, and in Fig. 18

has been discussed by Smith and Berktay
we see the c¢riterion represented graphically for signals subject to
spherical spreading loss in the form of curves of SPL at the Rayleigh
distance va frequency for three different ascurce diameters.’ These
curves were computed for fresh water with the small signal attenua-
tion coefficlent shown. Points above these curves corregpond to
suund pressure levels and frequencies sufficient to cause the oceur-
rence of shock formation beyond the Rayleigh distance for the par-
ticular source frequencies and diameters conaldered. Polnts on the
curves represent threshold values, and points below the curves rep-

resent values of SPL and frequency which are not sufficient ro cause

the onset of shock formation beyond the spreading disctance. Of
¢course plane wave shock formacionm may occur within the spreading
distance for a particular CW source and the possibilicy of chis
occurrence can be determined by examining the ratio of che critical
range at which shock formation occurs to the spreading discance -
evaluated a3 a Function of source diamerer and frequency. This
ratio of critical range to spreading distance for a (W source in
fresh water is shown 1n Fig. 19, and it is clear that if.the ratio
exceeds unity then shock formation can caly occur beyemd the Ray-
leigh distance for the particular frequencies and gource diameters
under consideration. Another useful result of the analyrical ex-
pressions which we have just considered is that they can be used to
predict the amount of finite-amplitude attenuation suffered by a

€W signal in generaring a harmonic spectrum during its course of

propagation through the medium. This has been discussed in detail

by Blackstock(ll), Cary‘zb) and by Smith and Berktay(25J so that

we can pass om to the next topic which 1s concermned with the numer-

ical solution of Burger's equaticn. Summarizing what has been
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accomplished enalytically therefore, we have seen that exact Zone 1

golutiona of the logsless Burger's equation are available for CW
signale mud for more geweral waveforms. However, Zone II solutiocns
have ;rmly been obtained for CW signals.

gven if such sclutions are cbtained they will scill have
to be supplemented by pumerical analysis for the case of completely
arbitrary source waveforms. 1 should mention at this point that
Naugolnykh, Soluyan and Khokhlw(a} and independently the autho:(n)
have appllied t.he‘ method of successive approximations to obtain
approxisate soluticns of Burger's equation for rhe case of paramecric
interactions bétween CW signals and the self interaction of ampli-
tude modulated waves. Some of these solutions will be briefly re-
ferred to later on in this talk., Thus, passing on to Fig. 20 we
have an encapsulated oummary of the numerical methods applied to
Burger's equation prior te 1970.

The first numerical solution of wote is due to Blacks:oc.k(ln

who made a numerical harmonic analysis of the EDpf—Cole-Hendousae(z)
exact plane-wave-solution for oW signals, which we previously die-
cussed, in order to evaluate the spectral amplitudes as a function

of range. Thia amnalysis was performed with increasing values of

the Acoustic Reynolds number l‘o, and as Blackstock discovered, the
numerical accuracy seriol_.lsly deteriorated for values of [‘° greater
then fifty. This was primarily due to the slow convergence and al-
ternating signe of the terms of the Bessel-Function series in the
pumerator and denominator of tha quotient (see Fig. 7). Consequently,
harmonic analysis of exact solutions of this form cannot be recom—
wended, particularly as they become increasingly complicated when

the source waveform contains more than one frequency compcneént.
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The next applicaticn of mumerical methoda to a more general
form of Burger's equation which included dispersive terms, was carried

(26) who ugsed a finite-difference mesh

out by Marsh, Mellen, and Konrad
to replace the equation by a set of linear algebraic equations which
were then solved on a digital computer by standard Matrix procedures.

In order to decrease the computation time required to obtain

(28} oxtended the

solutions via finite-difference approximaticms, Cary
i;e:hnlque which had been applied by Banta te the solution of the loss-
less Burger's equatiom, which we considered earlier on. This method,
originally due to Lagrange, consists in expanding the normalized par-
ticle velocity in a Taylor series as showm, and then obtaining a.naly!::l.—-
cgl expresslons for the derivatives which appear in this series via
the differential-equation. I should point out that fi (subacript 1) .
representa the value of f at the ith field point and the incremeat

Af in the Taylor serles represents the dimnsionless spatial distance
between two fleld points. Once again D; represents the sth deriva-
tive with respect to f, and in this notation Burger's equation has
been reexpressed as shown. Locking at the equation in this form it

is immediately evident that the first derivative with respect to £
which appears in the Taylor serles ig given by Burger's equation it-
self in terms of derivativas of V with respect to y. Thus, if we

are given the wa:refom as a function of time at some polnt in space,
which could, but need not be, the source itself, we can compute the
first derivative with respect to £ at this point by differentiating
the waveform with respect to y the required oumber of times and in-
serting these derivatives in the terms on the right hand side of the
equation. Io order to cbtain algebraie relationships for the higher

derivatives with respect to f in terms of derivatives with respect

to y, which we can compute, wa differentiate Burger's egquation with

82




respect to f and replace all terms om the right-hend-side which con-
tain the first derivative with tespect to f with the right-hand-side
of the previous equation. In this manner the second derivative with
respect to ¥V 18 obtained in teres of derivatives with respect to ¥.
Continuing in this manner the higher derivatives with .- cect to f
can be expressed recursively in teems of devivetiva ;1th respect to
y, although the degree of complexity iacreases with ¢ach successive
f derivative, making it impractical to go beyond il sixth order.
However, the advantage gained in using aove than thred darivatives
in the Taylor series is thar ir peiwits larger dosvimnrs in &f
to be used, than would be requirad far conviergunee with a finlce-
difference mesh, which only makes use of the first two terms in the
Taylor series as the basis for approximating the derivatives. Ouce
expressions for the f derivatives have been obtained therefore, ia
terms of y derivarives, they can be readily programeed, and once
the time waveform has been specified at some field-point all of
the subsequent calculations can easily be carried ocut om a digical
computer. Thus, if we are only interested in computing the time
waveform of a finite-amplitude signal as it propagates through the
medium this method can be very useful. It can also be readily ex-
tended to the case of a dispersive medium as showm by Cary and
Fenlonszg) The method does have its disadvantages however, especially
if one is primarily interested in computing the spectral levels of
the nonlinearly generated harnonics as the signal propsgates through
the medium. These disadvanrapes are related to the required numerical
operations vhich are briefly -mwmarized in Fig. 21.

As an alternative ro this methoed, the 9uthor(27) found it

preferable to express the rormalized particle velocity as a Fourler
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NUMERICAL OPERATIONS REQUIRED

1. Source Waveform Sampled at the Nyquist Rate

2 Filter to Remove Spurious Harmonics Above the

cut - off Frequency
3. Numerical Differentiation
4. Numerical Harmonic Analysis

Fig. 21




series, shown in Fig. 22, which enables Burger's equation to be re-
placed by a coupled set cof ordinary nonlinear differential equatioms
with the spectral amplitudes as the dependent variables. In this

set of equations the spectral ampliéudes are complex, and the term
;n* ;n represents the self-convelution of the signal in frequeacy
space. Since the solution of these coupled equatfons have beem dis-
cugsed alsewhere(ZT) the method-of-selution 1s only very briefly

. outlined in Fig. 23. Here we gee the coupled-modal form of Burger's
equation written out again, and below it we see the spectral ampli-
tudes expressed as a Taylor series, where the matrix C:,i representsa
the f derivatives as shown. Using the same technique applied in the
Banta-Cary wethod we can thus obtaln an expresslon for the nth deriva-
tive with respect to f in terms of the (1:1-1)‘"h derivative, which in
this instance resules in the general recurrence relationship shown
below, I might just add that it is prefersble to use 8 Tayler

series expansion rather than a power serles C¢ represent the spectral
amplitudes when the Acoustic Reynolds number is a functiom of f (as
ir is when we have cylindrical or spherical spreading) because it
turns out that in this instance we can take repeated derivatives of
™l (£) with respect to £ rather than heving to represent rL )

as a power serles which would otherwise be required, The advantages
of the recurrefce technique are gummarized in Fig. 24,

A further development of this technique for computing the
trapsient response of signals can now be readily implemented. Thus,
in Fig. 25 we see, for simplicity, the unnormalized plane-wave form
of Burger's equation in terms of the dimensicnal variables v, r, and
1, and below it we see the pacrticle velocity expressed a5 the invarse
Fourier transform of 1ts spectrum. When the latter is {ngerted in

Burger's equation therefore, we obtain an equation for the apectral
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ADVANTAGES OF THE RECURRENCE RELATIONSHIP

periodic Source Waveforms with V(f o,—‘l'} ==V o L]

i
.

o Eliminates Wavelorm Sampling
o Eliminates Filtering the Source Waveform
o Eliminates Numerical Differentiation

» Eliminates Numerical Harmonic Analysis

2. Arbitrary Source Waveforms of Finite Duration in the TDomain

o Efiminates Numerical Differentiation
fliminates Numerical Spectral Analysis

Fig. 24
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arplitudes, which as before, includes the self-convolution of the
signal. But since the latter is equal to the Fourier Transform of the
signal squared, it ia immediately cbvious that we can make use of the
powerful machinery of digital signal processing which utilizes the
Fast Fourier Transform (F.F.T.) algorithm to rapidly switch from

‘the time waveform to the spectrum 48 the solution is obtained at

each incremental distance from the source. In order to use the

F.F.T. it is of course necessary to sample the spectrum at a rate
which depends upon the number of significant spectral components
generated during the course of propagation through the medium.
Usually this can be estimated from experience and a consistency check
can be readily made using a different sampling rate. How you will
notice that the coupled modal form of Burger's equation enables ua

to immediately expreas the finite-amplitude attenuation coefficient,
in terms of its smail signal value together with an additional term
which is the self-convolution of the signal divided by the spectral
vector. Thus, when all the significant gpectral components have been
formed by means of the recurrence relationship, this expression for
the finite-smplitude attenuation coefficient which 1s shown in Fig. 2b,
can be used to compute the spectrum at all subsequent values of range.
In general, this me£hod requires the nse of a smaller gspatial increment
af, which implies a slower rate-of=-convergence. On the other hand,
since it only requires the evaluation of a single summation (integral)
compared with the double summation which appears in the recurrence
relationship, the computation time required is considerably reduced.
Note that in the last Few diagrams the equations have been shown

in dimensional form, and only for the plane wave case. This was done
merely to simplify the presentatiom, since Blackstock's stretched
coordinate system must be modified slightly when we are dealing

with the transieat response of flmite-amplirude signals. I wish to

cuphasize this peint because when performing numerical calculations

20
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FINITE-AMPLITUDE ATTENUATION COEFFICIENT :-
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it is preferable to work with the equaticns in nondisensional form.
As an example of the use of the numerical computational procedure
Fig. 27 shovs a calculation of the normalized fundamental
component of ar plane CW signal plotted as a function of normalized
range for increasing values of the Acoustic Reynolds number. These
calculations were made to check the accuracy of the procedure by com-
_parison with a similar set of curves computed by Caok.(ao) Cook's(:w)
pumerical technique I might add is not based on the use of Burger's
equation and depends cn a phencmenological representation of the

term which on the previocus slide we identified as the pelf-convolution
of the signal in frequency space. Thus, although Cook‘a(m) method
appears to give useful results for plane CW signals it is not clear
how it can be extended to deal with more general waveforms. The com=
puted results shown in this slide agree to within graphical accuracy
with Cogk's results, and as you can see the result of finite~zmplitude
attenuation is that source saturatiom occurs as the Acoustic Reynolds
pumber increases - which is consistent with the plape-wave finjte-

(ll). Fig. 2B shows the

amplitude results obtained by Blackstock
variation of second hatmonic levels relative to the fundamental as

a function of range, for the same values of the Acoustic Reynolds

gumber. Once again, these computed results agree with those of Cook
to within graphical accuracy and the same is true of the higher har-
monic components. 0Of course, 1 wish to emphasize again that this is
only an example which was used to check the accuracy of the computa-
tional procedure. This procedure then, is outlined schematically io
the form of a block diagram in Fig. 29 which is gelf-gxplanatory.

Thus with the use of the F.F.T. algorithm the trangient respouse of

arbitrary source waveforms such as coded pulses can readily be evaluated

as a function of distance from the source. Finally, I would like to
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discuss the transient solution obtained by applying the method-of-suc-
cessive-approximations to the coupled-modal form of Burger's equatiom.
This is ehown in Fig. 30 where spreading losses have been excluded
to simplify the presentation. Now the first-order-approximation is
obtained by neglecting the self-convolution term, and the second-order-
approximation is thec ubtained by gubstituting the first-order-approxi-
mation in the self-convolution term as shown and then solving the re-
sulting equation to give the solution outlined below.

If we consider the case of parametric interaction between
two CW pulses of finite-amplitude, and neglect the influence of all
ather spectral componeﬁts on the difference-frequency pulse spectrum -
a simplification which {8 consisteat with the accuracy of the second-
order-approximatien - we can obtain the far field transient response for
the difference-frequency signal as shown in Fig, 31 which is identical

to that derived by Muir and Blue.(al)

And in Fig. 32 we see the same
spectrun when the effect of spreading loss is included for the para-
metrically generated difference-frequency signal, where the spreading

distance r , 1s represented by the Rayleigh distance which is given

by kodsofkﬂ for a circular pisﬁon in a rigld baffle.

The first term inthis golution bas the well koowm funetional form

(32) The solution assumes of course

originally derived by Westervelt.
that the primary signals are not subject to spreading, i.e., that
parametric interaction takes place within the Fresnel zoae of the
primary signals.

In conclusion therefore, we have seen that the coupled-modal
form of Burger's equation and the resulting expressiom for the finite-
amplitude attenuation coefficlent, form the basis of a general proce-

dure for evaluating the spectral interactions of the progressive

finite-gmplitude signals of arbitrary spectral composition at the
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source, ae 4 function of range. And the attractive feature of this
procedure is that it can be applied onumerically or analytically de-

pending on the degree of complexity involwed.
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