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Abstract

A short review of the second—order parabolic wave equation and its recently
obtained solutions for monotonic and bifrequency finite-amplitude waves radiated
by plane piston projectors in thermoéviscous fluids is provided herein.

1. Introduction

The purpose of this paper is to provide a very brief review of the role play~
ed by thesecond-order parabolic wave equation in nonlinear acoustics. With
this in mind the discussion has been kept as free from symbolic content as pos-
sible in order to emphasize the significance of the principal analytical and
numerical results that have thus far been obtained.

In order to derive the second—order parabolic wave equation, onebegins by
considering the general second-order wave equation for acoustical disturbances
in an isotropic, homogeneous, thermo—viscous fluid which is given by including
viscous and thermal losses in Westervelt's [1] lossless form of the equation as

{(l—Aat) v2 — cjaf} p’ = (alpoc’g) aip‘z (1)

Where p’ is the excess (i.e. acoustic) pressure, 00 is the equilibrium den-
sity of the fluid, co is the small-signal—speed-of—sound, B is the coefficient
of nonlinearity and A is the thermo-viscous dampingcoefficient.

, a -1
Putting t t - z/co and z = 2 gives at = Br, and 32 32, - co 3t..

Assuning further that the rate-of-chsnge of the time waveform is much greater

with respect to t' than 2‘, which is a most reasonable hypothesis for progres-

sive waves, then 8:, << 3:.t» so that in coordinates O = Bsokoz and T = mot'

scaled with respect to an arbitrary reference frequency mo, eq. (1) becomes

aT{ao — (1/1‘o)aT2 — p‘ az}p‘ — (1/200) vi} 1» = o, P .= p/po (2)

L L'
2 = l 2' 5'32 ’s ’= .where V anx + Ly y , x x/Lx, y y/Ly, Lx and Ly being characteristic

lengths in the x and y directions. Likewise, pc is an arbitrary reference

pressure (e.g. the peak pressure at the source), 00

r0 = A/Ao, A = LxLy, and F0 = Beokoluo, with a0 = Aw

_ _ 2
2 BEokoro’ eo _ po/goco’

0?
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Eq. (2) is the thermo-viscous form of Zabolotskaya and Khokhlov's [2] equa-
tion derived by Kuznetsov [3]. Exact but rather intractable lossless solutions
of this equations have been deduced by Rudenko [4] and by Vinogradov and Vorb'ev
[5]. In the frequency domain eq. (2) becomes

2 2{80 + (n ll‘o) - (1/200)V }p9 = (in/2) F902), (2 = 113/000 (3)

where Fn( ) = Jw( )eiQT dT is the Fourier Transform of the function in paren—

thesis.,

Eq. (3) is the second—order parabolic wave equation with which this paper is
concerned. Before considering its properties however, we note at this point that
as 00 + w, eq. (2) assumes the plane wave form of Burgers' equation, and likewise
eq. (3) reduces to the form of the latter in the frequency domain. Hence do

is a natural perturbation parameter which has been.used by Zabolotskaya and

Khokhlov [6] and by Vorob'ev and Slavin [7] to obtain lossless asymptotic solu—
tions of eq. (2) and hence of eq. (3). A considerable research effort is re—
quired however to deduce tractable solutions of eq. (3) for practical acoustic
problems. '

2. Weak Finite—Amplitude Waves
2.1 Monotonic Excitation

For the'case of weak finite—amplitude waves, eq. (3) can be solved by the
method of successive approximations. Using this approach, Rudenko, Soluyan, and
Khokhlov [8] obtained a solution for the second harmonic field formed in a loss-
less fluid (i.e. P' = m=) via nonlinear self-interaction of a weak monotonic
finite—amplitude-wave of frequency mo radiated by an axisymmetrically excited
circular piston. A generalization of this solution derived by Fenlon and Keener
[9] for second harmonic generation in a thermo-viscous fluid is given along the
beam axis with R= 0/00 and so = oo/I‘o as

 

a /2
— _o _ _ _ _ ' _. _229(k) - km {E1[ iZao] E1[ iZao (lilt)]}x exp[ 430R flag] (4)

o /2 '
-. 121R ln(l-iR), in a lossless fluid (1.2. so = 0) as given by

Rudenko [8] (43)

. -2a°R —4a°R

*(1‘0/4) e — e , for R << 1, 30 >> 1 (1.1,)

where-E1 (x) = [as x dx’ is the exponential integral [10].. x,
x,

It should be noted that although eq. (4b) is identical to the plane wave solution
of Burgers' equation derived by Naugol'nykh, Soluyan, and Khokhlov [11], in the
present context it is simply a near-field, high-frequency approximation of eq.(h).

;
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For R << 1, eqs. (43) and (4b) both give. P + 0/2, showing that the lan wave29 P
form of Burgers' equation holds, as expected, at short ranges within the near—
field of a bounded aperture projector. 0n the other hand, the far-field solutions
of eq. (4) is given by

—12a - ha R -Za R
e O 0 e O

Pmm) + (Po/Io) iZaOEi[iZao] i — i2 } , R >> 1 (53)

-4a R -Za Ra o e o .-> (yo/1,) (E _ i2 ) , 30 >> 1 (5b)

For ao >> 1, eq. (53) shows that for significant regions of the far—field P29 +
—Za R

0
e

(Po/4) £2 ,and likewise, depending on the magnitude of so, eq. (5b) gives the

same result, in agreement with an asymptotic solution of the spherical wave form
of Burgers' equation derived by Webster and Blackstock [12].

Off axis, Rudenko, Soluyan, and Khokhlov [8] have shown that the second har-
monic field is giVen by the square of the directivity function of the fundamental,
in keeping with Lockwood, Muir, and Blackstock's [13] results.

2.2 Bifreguency Excitation

The difference—frequency signal formed in a cherub-viscous fluid via non—lin-
ear interaction of weak finite-amplitude primary waves of frequencies m1 and NZ,

simultaneously radiated by a plane piston projector has also been explicitly de—
fined via solutions of eq. (3). For example, a far-field analysis by Fenlon [14]
for the case of an arbitrarily excited bifrequency radiator subsequently led to a
high frequency near—field solution by Novikov, Rudenko, and Soluyan [15] for the
case of an axisymmetrically excited bifrequency radiator with Gaussian beam pro-
files at the face of the projector. As emphasized by Hobaek [16], the importance
of the latter solution is that it gave explicit form to the difference—frequency
field due to the fact that the Gaussian beam approximation enabled the field in-
tegrals to to integrated analytically. Novikov, Rybachek and Timoshenko [17]
next generalized the previous analysis [15] to include diffraction effects due to
the projector aperture, thus extending the solution to include both the near and
far—field regions of the nonlinear interaction zone. A more general analysis for
the case of an arbitrarily excited piston projector was carried out independently
by Fenlon [l8] and subsequently elaborated by Fenlon and McKendree [19]. In this
analysis, the primary waves were expressed in Gauss-Laguerre modes of the lin—
earized form of eq. (3) (derived by Kogelnik [20]), thus permitting the differ-
ence—frequency field formed by the primary wave fundamental (i.e. Gaussian) spa-
cial modes to be recovered as a special case. Fenlon [21], [22] also obtained
solutions of eq. (3) for the on-axis component of the difference-frequency field
formed via nonlinearly interacting primary waves radiated by square and rectan-
gular faced projectors, but only for the case of Gaussian primary modes. In this
instance, for the case of a square—faced projector the axial difference—frequency
field can be expressed as,
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P(R)_(Kza/2) E 4/ 1
g_ -L 1 l-i(aTu<_/4)(1-1 R K_)/( ~1K_R)]

1 - iK_R I

-El [—1(3TK_/4)(1+4R2)/(1-1K_R]}

x exp 'i—am R-1(aTK_/4)(1—14/K_)/(1—1K_R)] (6)

2
(K a /2) z

+ fig—R ln(i'::4R‘R/K), in a lossless fluid ' (68)

+ (K3 00/2) { E1[-i(a K_/4) (l-ihR/K_)] -31[-1(a K_/4]}

x exp [—aw R -i(a K_/6) (1—14R/K_)], for R2 << 1 in the near
” field (6b)

“ I = 2 I'B ' —‘ '
where do — Bsokoro, so (p01 + p02)/p°c° , k0 (k1+k2)/2, and aT — 200/?D
for m1 = m2 with K_ = u:_/m°. Eq. (6) has also been shown [21], [22] to provide

very good agreement with experimental results. Another interesting result is the
so called 'gain' of a parametric array relative to that of the ideal 'virtufi‘i-
end—fine-array' envisaged by Westrvelt [23] which is defined as G‘an_(R)/'PQ-_'(R)

where P:_(R) = (Ki OOIZaTR) exp(—am_R). Since the value of 6 becomes independent

of R in the far-field of the parametric array it is instructive to plot GIG“, as a
function of R where Gm denotes the far-field gain. This function is depicted in
Fig. l for (no/aL = 1/9_ = 5, as aT varies from 10'6 to 20.

Physically speaking, Fig. 1 shows that a parametric array only behaves as an
ideal 'virtual—end-fire—array' throughout most of the nonlinear interaction zone'
for > 10. Figure 1 also shows. that the effective length of a parametric array
can be considerable for small values of . For example, if aT = 10—3, the effec—
tive parametric array length is greater t an a thousand times the Rayleigh dis—
tance at the mean carrier frequency.

The directional characteristics of axisymmetric parametric arrays have also
been evaluated by Fenlon and McKendree [19]. In Fig. 2, for example, the half-
power beamwidth of a parametric array normalized with respedt to that of an ideal
'virtual—end-fire—array' is shown as a function of R for aT > 1 and w0/w_ = l/fl_= 5-
The distinctive minima depected in these characteristics, which disappear for
/K_ < 1, occur within the same region of R as the local maxima depicted in Fig. 1

Such features, which have been observed experimentally by Hobaek [16] are due to
rapid phase changes within the near field of high frequency parametric arrays.
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Fig. 1 - Parametric Array Gain Characteristics
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Fig. 2 - Parametric Array Beamwidth Characteristics
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3. Strong Finite-Amplitude Waves

Significant waveform distortion and shock formation of initially monotonic
waves radiated by anaxisymmetrically excited piston operating at strong finite-
amplitudes in a thermo—viscous fluid have recently been investigated by Bakhvalov,
Zhileikin, Zabolotskaya, and Khokhlov [24], and by McKendree and Fenlon [25], via
numerical analysis of eq. (3). Typical results obtained for the case of Gaussian
mode excitation are shown in Fig. 3, the on—axis time waveform being depicted at
ranges where the maximum nonlinear distortion has occurred.

(a)
P
(
6
.
0
.
?
)  

Figure 3. On-axis time waveforms

(a) o = 2, oo = 3.25, To = 65; (b) o s 1.8, do = 10, P0 = 200

Unlike the shock wave solutions of Burgers' equation, these waveforms clearly
exhibit 'd.c. bias' resulting from phase shifts introduced via diffraction effects.
These results are in keeping with experiment. HcKendree and Fenlon [25] have also
computed axisymmetric difference-frequency fields formed by strong finite—ampli—
tude primary waves, butmuch work remains to be done before a complete summary of
these results is available.

4. Conclusions

In this brief summary, only the primary references to recent investigations
of the second-order parabolic wave equation have been cited. It is hoped that
the reader will at least have obtained an overview of this rapidly expanding "
field of investigation.
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