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Introduction

have propagation in a fluid—filled pipe involves coupled motions of the solid

and fluid components. It is not in principle possible separately to identify

"structural" waves, or "fluid" waves, although, under some circumstances, the

energy in one of the components may far outweigh that in the other; axial

uavenurbers, and phase and group velocities must necessarily be identical in

both media. A free wave in a pipe is diaraCterised by its axial wavenuxcber-

frequency. or dispersion curve, and its circumferential mode order. In a

thin-walled pipe in-vacuo each circumferential mode order is associated with

three different dispersion curves, or branches. At any particular frequents]

the wave notion corresponding to each branch involv‘es different ratios of the

radial, axial and tangential displacements. The ratios associated with each
branch vary with frequency, thereby rendering the commonly encountered ten-rs

"flexural wave", " longitudinal wave" and "torsional wave" somewhat misleading.

The pressure of fluid within the shell increases the number of branches
greatly which further complicates the labelling and physical interpretation of

the brand'Ies.

A further complication of wave behaviour in undamped cylindrical shells, both

in-vacuo and fluid—filled, is the existence of waves of complex wavenumber.
This phenomenon is not only puzzling from a physical point of vieM, but makes

the task of computing the wavenumbors. and tracing each branch. lengthy and

difficult. However. becaxse one of the major applications of the results of
tree have analysis is the generation of impedance diaractoristics for use in

the investigation of the effects of applied forces and moments, and of dis-

continuities in pipework, on noise and vibration radiation and transmission,

a_ll_ possible free wave branches must be identified and included. This paper

summarises the results of free wave analysis of thin-walled. fluid-filled

pipes and presents a discussion of dispersion curve characteristics, and ratios
of propagating energy flux. in the two media. The purpose is primarily to

attach physical significance to the results and not to argue analytical

details.

Disper n Analysis

Kumar (1) and Merkulov (2) have previously presented the most general
analyses of this prctlem of free wave propagation in fluid-filled elastic
shells, while numerous other authors have presented analyses involving various

approximations, thereby restricting the usefulness of their results. Kumar

deals only with aid-symmetric modes of fairly thick-walled shells, and pro-

vides little physical interpretation of his results. while Merkulov omits the

complex branches.

The Donnell—Mushtari shell equations are employed in the present analysis;
the effects of rotary inertia and transverse shear are omitted. The fluid is
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assuted to be inviscid and perfectly elastic. The circumferential variations
of the fields are assumed to be of the form cos/sin(nfl) , the frequency is u and
the axial wavenumber kns, where the subscript 5 denotes a particular dispersion
brandi. The acoustic pressure field takes the form

r.
p = E E P cos(n8)J (k r)exp Hut—k x) .

5:0 “=0 [)5 n S [’15

Substitution into the radial force shell equation yields a matrix equation in
terms of the coefficients of axial motion Uns, tangential motion Vn , and radial
motion w 5, of the shell and the pressure coefficients PM. The condition of
continuigy of radial velocity at the shell wall allows Pn to be written in terns
of HHS. The 3 x 3 matrix terns contain squares of the non-dimensional frequenq:
paraceter n = oa/c , and of the shell thickness parameter 8 = hZ/lZaz, powers of
(k a; and of n of up to 4, and a fluid loading tern FL = {2203 /D )(l‘l/aJ-l(kral_l
[anlk a)/J '(kral'l. f S sn S n S .

Equation of the determinant of the matrix equation to zero yields the charac—
teristic dispersion equation. The roots of this equation were found by using a
complex root searching technique on an IQ. 2900 computer. Initial values were
chosen to be those of the in-vacuo bending near field (3). Dispersion curves
were obtained for Shells of steel and hard rubber, filled with water, with n = 0
and l and wall thickness ratios h/a = 0.05 and h/a = 0.005. An example is shown
in Figure 1 in which n = o, h/a = 0.05 and the material is steel.

The branches having real wavenumbers are discussed first. 'No branches exist at
low frequencies. The s = l branch is close to that of a plane fluid Have in a
rigid-walled tube. The s = 2 branch is close to the ln-vacuo "flexural" shell
branch which is largely extensional in nature. As 9 is increased the coupling
of shell and fluid motion increases,- 5 = 2 approaches the first pressure release
duct mode and s = l approaches the in-vacuo flexural node. The branch s = 3
cuts on at n = 0.85. It initially follows the corresponding extensional in-
vacuo shell branch (which cuts on at 57 = 1.0) until 5? )4 1.3. when it turns
sharply to approach the second rigid-walled duct mode. ' Near this freqt ncy
s = 4 cuts on as a fluid wave in a duct with compliant walls and then turns into
a plateau where it behaves like an extensional in—vacuo shell have until finally
reverting to a fluid like wave for n > 2.3. Higher 5 branches cut an as "fluid"
waves, at frequencies close to the rigid-Hall duct cut-off frequencies, change
to follow the in-vacuo extensional wave branch as "shell" waves, and then revert
to fluid-like waves ata frequency where the in-vacuc shell branch crosses the
rigid—walled duct branch. These "conversion" regions correspond to inter-
sections of the dispersion curves for the uncoupled solid and fluid waveguides,

i.e., a form of coincidence.

 

In the purely imaginary plane the branches at low frequencies correspond to the
rigid-walled duct modes below cut-off: this is due to the rigidity of the shell
at low frequencies. As the frequency increases the shell becomes less stiff in
the radial direction and the branches fall between the rigid-walled and pressure
release solutions. Finally the imaginary branches terminate at the k s = 0 axis

_ (cut-off) whence they proceed as real branches. At low values of n the complex
branches correspond closely to those for an in-vacuo shell. The real parts of
the s = 4 and s = 6 branches are of opposite sign: the imaginary parts have
equal value to the former. but are of the ease sign. These complex waves must

exist simultaneously and have equal anplitudes, so that the energyrconservation
principle is not violated. The associated radial pressure variation in the

60



 

Proceedings of The Institule of Acoustics

WAVE PEOPRGA’I‘IQJ IN FLUIDFILLED PIPES

fluid takes the for: of an evanescent interference pattern. At higher fre—

quoncics the complex branches for: branch links which leave the imaginary plane

(with opposite signs of the real parts) at the peak of a "meander" and re—enter

the imaginary plane at the rear of the next meander (e.g. (5,6) . (7,6) . (8,6) in

Figure l) . The paired complex branches, for example a = 7 and 6, would. by

analogy with real valued branches. appear to exhibit near—field coincidence

behaviour.

The primary effect of reducing the shell thickness by a factor of lo is to move

the fluid—like branches towards pressure release duct modebehaviour. The s = 2

branch remains largely unchanged because the low frequency "flexural" wave in the

shell is largely extensional in nature, and it behaves like a pressure release

mode at high frequencies. The s = l branch changes radically, swinging upwards

and tending to on at n -> 1.0; it ultimately disappears completely as h/a ~ 0.

It has very 1w group and phase velocities over most of the frequency range.

Similarly, the complex branches disappear as h/a r 0. The imaginary branches

remain like rigid—walled duct codes at very low frequencies but move toxards

pressure—release behaviour with increasir. they cut-on as nearly pressure—

release nodes, transform into the extensional shell branch and then veer away

again to asymptote to pressure release behaviour. The complex branches do not

intersect the imaginary plane and therefore near field coincidence behaviour

does not occur in very thin shells.

 

with a hard rubber shell, in which the sound speed is much less than in steel

(% 3.7:1) . the acoustic modes do not cut—on until much higher values of 9..

Because it does not intersect any fluid branches the s = 2 branch behaves as a

shell wave over the whole frequency range considered (0 < H < 4.0]: the plateau

behaviour observed in steel shells is generally absent. The s = l branch

approximates to a plane acoustic wave at very low frequencies, but quickly changes

to that of an acoustically slave "shell" wave, rather like that in the very thin—

walleé steel shell. The high fluid impedance at frequencies below the duct cut—

off frequencies prevents the n = o extensional shell wave from cutting-on at

I} = 1.0, a it would in—vacuo. ht fl = 2.46 the s = 3 branch cuts-on as an

acoustic mode in a slightly cozpliant tube, and then rapidly asymptote; to a

pressure-release mode,

Ene rgy i stributi ons

The ratio of» energy flux in therfluid t? that in the shell can be sham to be

given by Er = 512(cf/65HkncaHksa Jn‘ (k EH ‘(F /Sf) , where F,— ar.d S are given

at the end of the paper. ~This ratio is plotted for a Hater—filled séeel shell

of h/a = 0.05, and n = o, in Figure 2. At low frequencies the energy travels

primarily either in the fluid (5 = l) or in the solid (5 = 2) . At 9 x 0.82 the

ratio in both branches is unity: above this frequency the distributions reverse.

Just above the cut-off frequencies of the higher modes. in the plateau region,

(5 > 3) the energy resides primarily in the solid; as the branch moves twards

a more fluid-like wave behaviour, the energy moves strongly into the fluid

medium. This type of behaviour is exhibited by all higher nodes. In general,

then the energy ratio is either much greater than or much less than unity in the

n = 0 nodes. In the n = 1 nodes this is not so clearly the case. although values

of it close to unity are relatively rare.

Conclcs ion

 

Approximate models of fluid—filled shells, especially those neglecting axial

shell cation, are likely to product highly misleading results. Propagation
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modes tend to be either sh: ll or fluid dominated. The- actual response, or

energy fluxes in any particular case will depend upon the form of excitation.

Aggendlx

SE = (h/a)3/6[(knsa)3 + vni(knsa) + gamma)? + nkJ + (h/a) [(knsajkaz +

¢ nvkaflt + me] + (h/Za) (1 — v) u - u?) [mant + (knsanzfl

where Rt = VHS/v1:ns and Ra = uns/wns. Pi = |:[mfl-()=:a))2«1-(1-(n/k:a) 23n1(k:a)] .
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