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Introduction

Wave propagation in a fluld-filled pipe involves coupled motions of the solid
and fluid components. It is not in prineciple possible separately to ldentify
“structural” waves, or "fluid" waves, although, under some circumstances, the
energy 1n one of the components may far outweigh that in the other; axial
wavenurbers, and phase and group velocities must necessarily be identical in
both media. A free wave in a pipe is characterised by its axial wavenumber-
frequency, or dispersion curve, and its circurferential mode order. In a
thin-walled pipe in-vacuc each circurferential mode order is associated with
three different dispersion curves, or branches. At any particular frequency
the wave motion corresponding to each branch involves different ratios of the

radial, axial and tangential displactements. The ratios associated with each
branch vary with freguency, thereby rendering the commonly encountered terms
"flexural wave", "longitudinal wave" and "torsional wave" somewhat misleading,

The pressure of fluid within the shell increases the nurber of branches

greatly which further complicates the labelling and physical interpretation of
the branches.

A further complication of wave behaviour in undamped cylindrical shells, both
in-vacuo and fluid-filled, is the existence of waves of complex wavenumber.
This gfhencmenon is not only puzzling from a physical point of view, but makes
the task of computing the wavenumbers, and tracing each branch, lengthy and
difficult. However, because one ¢f the major applications of the results of
free wave analysis is the gencration of impedance characteristics for use in
the investigation of the effects of applied forces and moments, and of dis-
continuities in pipework, on noise and vikraticon radiation and transmissioen,
all pessible free wave branches must be identified and included. This paper
surmarises the results of free wave analysis of thin-walled, fluid-filled
pipes ané presents a discussion of dispersion curve characteristics, and ratics
of propagating energy flux, in the two media. The purpose is primarily to

attach physical significance to the results and not to argue analytical
detalls.

Dispersion Analysis

Kumar (1} and Merkulov (2} have previocusly presented the most general
analyses of this prablem of free wave propagation in fluid-filled elastic
shells, while numercus other authors have presented analyses invelving various
arproximations, thereby restricting the usefulness of their results. Kumar
deals only with axi-symmetric modes of fairly thick-walled shells, and pro-

vides little physical interpretation of his results, while HMerkulov omits the
complex branches.

The Donnell-Mushtari shell equaticns are employed in the present analysis:
the effects of rotary inertia and transverse shear are omitted. The fluid is
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assuned to be inviscid and perfectly elastic. The circumferential variations
of the fields are assumed to be of the form cos/sini(nB), the freguercy is w and
the axial wavenumber k__, where the suhscript s denotes a particular dispersion
branch. The acoustic pressure fleld takes the form

L -]
.
p= € ELP_ _cos(nB)J_(k_xlexp ifwt-k__x).
80 n—o N5 n s ns

Substitution into the radial foree shell eguation yields a matrix equation in
terms of the coefficients of axial motion U » tangential motion V__, and radial
motion W st of the shell and the pressure coefficients P__. The condition of
continui%y of radial velocity at the shell wall allows P to be written in terms
of W . The 3 x 3 matrix terms contain squares of the non-dimensienal freguency
pararcter Q = wa/cL, and of the shell thickness parameter B = h2/12a2, powers of
(kn a) ang of ) of up to 4, and a fluid loading term FL = Qz{pflns) (h/a)-lﬂlc:a]_l
[on Tk a) /9 * (kCal] .

Equation of the determinant of the matrix equation to zero yields the charazc-
teristic dispersion equation. The roots of this equation were found by using a
complex root searching technique on an ICL 2900 computer. Initial values were
chosen to be those of the in-vacuc bending near field (3). Dispersion curves
were obtained for shells of steel and hard rubber, filled with water, with n = O
and 1 and wall thickness ratiecs h/a = 0.05 and h/a = 0.005, An example is shown
in Figure 1 in which n = 0, h/a = 0.05 and the material is steel.

The branches having real wavenumbers are discussed first. Two branches exist at
low frequencies. The § = 1 branch is close to that of a plane fluid wave in a
rigid-walled tube. The s = 2 branch 1s ¢close ta the in-vacuo "flexural” shell
branch which is largely extensional in nature. RAs 01 is increased the coupling
of shell and fluid motion increases; s = 2 approaches the first pressure release
duct mede and 5 = 1 approaches the in-vacue flexural pode. The branch s = 3
cuts on at Il = 0.85. It initially fcllows the corresponding extensional in-
vacuo shell branch (which cuts on at § = 1.0) until © % 1.3, when it turns
sharply to approach the second rigid-walled duct mode. Near this frequency

& = 4 cutg on as a fluid wave in a duct with compliant walls and then turns intc
a plateau where it behaves like an extensional in-vacuo shell wave until finally
reverting to a fluld like wave for @ > 2.3. Higher s branches cut on as "fluigd"
waves, at frequencies close to the rigid-wall duct cut-off freguencies, change
to follow the in-vacuo extensicnal wave branch as "shell" waves, and then revert
to fluid-like waves at a frejuency vhere the in-vacuc shell branch crosses the
rigid-walled duct branch. These "conversion" regions correspond to inter-
sectiens of the dispersion curves for the uncoupled solid and fluid waveguides,
i.e., a form of coincidence.

In the purely lmaginary plane the branches at low frequencies correspond to the
rigid-walled duct modes below cut-off; this is due to the rigidity of the shell
at low frequencies. As the frequency increases the shell becomes less stiff in
the radial directicn and the branches fall between the rigid-walled and pressure
release solutiens. Finally the imaginary branches terminate at the k s =9 axis
. (cut-off} whence they proceed as real branches. At lew values of 0 tﬁe corzplox
branches correspond closely to these for an in-vacuo shell. The real parts of
the s = 4 and s = & branches are of opposite sign; the imaginary parts have
equal value to the former, Lut are cof the same sign. These complex waves must
exist simultaneously and have equal amplitudes, so that the energy conservation
principle is not viclated. The associated radial pressure variation in the
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Fluié vakes the form of an evarescent interference pattern. At higher fre-
guencies the complex branches form branch links which leave the imaginary plane
(with opposite sigrns of the real parts) et the peak of a "meander” and re-enter
the imaginary plane at the rear of the next meander {(e.qg. {5,8), (7,6), (8,8) in
Figure 1). The paired eomplex Lranches, for exacple 5 = 7 and €, would, by
aralogy with real “alued branches, appear to exhibit near-field ccincidence
behavicur.

The primary effect of reducing the shell thickness by a factor of 10 is to move
the fluid-like branches towards pressure release duct mode behaviour. The 5 = 2
branch remains largely unchanged because the low frequency "flexural® wave in the
shell is largely extensicnal in nature, and it behaves like a pressure rclease
mode at high frequencies. The s = 1 branch changes radically, swinging upwards
and tending te = at {t ~ 1.0; it ultimately disappears corpletely as h/a -+ Q.

It has very lew group and phase velocities over moct of the frequency range.
Similarly, the complex branches disappear as hfa + 0. The jmagirary branches
rerain like rigid-walled duct modes at very low frequencies but move towards
pressure-release behaviour with increasirns 7:  they cut-on as nearly pressure-
release rodes, transform into the extensional shell kranch and then veer away
again to asymptcote to pressure release behaviour. The complex kranches do net
intersect the imaginary plane and therefore near field ceincidence kehaviour
does not occur in very thin shells.

With a hard rubber shell, in wkich the sound speed is much less than in steel

{v 3.7:1}, the acoustic modes do not cut-on until much higher valves cf Q.
Beacause it does not intersect any fluid branches the s = 2 branch behaves as a
shell wave over the whole frequency range considered (0 < @ < 4.0): the plateau
behaviour observead in steel shells is gemerally absent. The s = L branch
approxirates to a plane accustic wave at very low frequencies, but guickly changes
to that of an acoustically slow "shell” wave, rather like that in the very thin-
walled steel shell, The high fluid impedance at freguencies below the duct gut-
cff freguencies prevents the n = 0 extensional shell wave from cutting-on at

fi = 1.0, as it would in-vacuc. At £ = 2.4& the s = 2 branch cuts-ond as an
accustic mode in a slightly cospliant tube, and then rapidly asymptotes to a
prescure-release mode.

Energy Distributions

Tne ratie of energy flux in the fluid tg that in the shell ¢en be shown to be
given by Er = ﬂztpf/psitknsajtk aJg "(k.at 2(F_/s.), where F. ard 5. are given
at the end of the paper. Thic ratio is plotted for a water-filled steel shell
of hja = 0.05, and n = Q, in Figure 2. At low freguencies the energy travels
primarily either in the fluid (s = 1) or in the solid (s = 2). At 0 0.B2 the
ratic in both branches is unity; above this freguency the distributions reverse.
Just above the cut-off freguencies of the higher modes, in the rplateau regien,

(s > 3) the energy resides primarily in the selid; as the branch moves towarcs
a mere fluid-like wave behaviour, the energy moves strongly into the fluid
medius. This type of behaviour is exhibited by all hicher modes. In genersl,
then the energy ratio is either much greater than or much less than unity in the
n=0mmodes. In the n = 1 modes this is rnot so clearly the case, although values
of E, close to unity are relatively rare.

Conclusion

Aoproximate models of fluid-filled shells, especially these neglecting axial
crell motion, are likely to product highly misleading results. Prcpagation
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modes tend to be either shell or fluid dominated. The  actual responsc, or
energy fluxes in any particular c¢ase will depend vpon the form of excitation.

Apperdi
= th/a)3selix a1 + valix &) + R O @2 + nk | + (h/a) [tk _a)R2 +

S¢

- Y 2
+ nvR R+ vaa] + h2a (1 - il - v R R+ (e AIR?]
- = = LT "ixTa)I2+t1- r,25 2.F
where R =V M _and R, = U M .. Fyp =4l '(kia))2+(1-(n/k )23 2(k a)].
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