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1. INTRODUCTION

The subject of this contribution is a problem which in this year celebrates its 60th birthday and which

still is alive. it not vivacious — an impression which one gets it one counts the number of papers written in

the last years about this topic. It came into the world by SOMMERFELD's paper. [t]. in 1909. Sommen‘eld

was interested in an analytical explanation of the observation at unexpected long ranges of radio waves

propagating over sea. So he treated the propagation of spherical electromagnetic waves over an absorbing

iintinite plane. His explanation of the long range propagation was the existence of surtaoe waves which are

guided along the surtace.

The intention ol the presem contribution is to make some remarks to the pecularities oi the literature

in this field and to give some new solutions which may help to finish some controversial discussions. A

more detailed discussion will be found in a toithcoming book. [2].

A citation irorn SOMMEFIFELD's paper may serve as guideline:

"There exist two opposite opinions which — at least in a general sense - can be characterized by

the conflict between Volume waves' and 'surtace waves'.. . .Thls intereaing wave type up to now

was mainly hypothetical. There was no prooi that 'n is developed irorn the waves which are radiated

from the source. It is a main task at the present investigation to supply this prooi and to decide the

question: volume wave or surface wave.‘

And then he makes a restriction:

'lt inlet be stated horn the very beginning, that the answer will not be the same under all conditions

and in all cases. because quite generally our simplified notations and conceptions mostly can

describe only some borderline cases adequately. and cannot represent the general complexity or

the phenomena"

This may be summarised by: 'The existence at surface waves can be shown in principle. their importance

in a concrete situation is still open'. This. however. is different from the statement in one oi the papers ol

HABAULT/FILIPPI. that the surface wave is nothing else but a mathematical aneiacl which only appears it

one applies a special method of approximation to the exact solution and which (in their own solution) does

not appear in the numerical results neither.

A iirst pewlarity oi the literature is. that generally RUDNICK. [3]. is said to have been the first. in

1947, to transfer the elearomagnetic solutions to sound lieids. This is not true. The first was SCHUSTER.

[4]. who. in 1539, not only has treated the porous half-space. but also an absorber layer of finite thickness

in Iront oi a rigid wall. tor which HABAULT/FILIPPI, [5]. claim priority. It must be said. however. that SCHU-
STER iust has applied the electro-acoustlc iield analogiele SOMMERFELD's solutions. so he has not

been aware that. In general. the elearomagnetic solutions cannot be adopted to sound absorbers

immediately (see below).
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Another peoularity ol the literature lies in the tact. that approximate results are mostly compared

against each other. The numerical integration oi the exact solution is said to be too complicated to be per-

lormed. It is hard, on this basis. to judge on the relative merits ot ditlerent approximations. So it is no won-

der that HABAULTIFILIPPI. [6]. on this basis declare the results at THOMASSON. [7]. to be wrong because

in THOMASSON's approximation can appear sound pressure levels above an absorbing plane which are

much higher than above a rigid plane. a result which — at the tlrst glance — is curious. indeed. and which

was not lound by HABAULT/FILIPPI in their approximation.

A tunher pecularity oi the literature must be mentioned in this context. Sometimes higher-order ap-

proximations are described. It. however. one applies them tor numerical computations. one realizes that the

results mostly are not much better than trom the first-order approximations — or even worse. So the higher—

order approximations have to be ruled out as a judge between diiterent lirstorder approximations.

It is on this background that methods tor direct numerical solutions at the exact equations are esti-

mated to be oi primary importance. Such solutions will be described shortly in what follows. Next the dis-

WSSIOI" about the surlaoe waves should be decided. It can be shown that the motor tor this long-lived dis«

wssmn are a number oi misunderstandings.

2. EXACT SOLUTIONS

The time tactor be exp(-iuit) . as usual in the literature. The geometry ls depicted in Fig.1 . A poirtt

source is placed in S on the z-axis in a height h above the absorbing plane z=0 .the receiver is at P(r.z)

in a radial distance r irom the z-axis and in a height 2 . The plane z=0 separates the upper medium with

the characteristic wave number and wave impedance k1 , 21 from the lower medium which Is either bulk

reacting. then with the characteristic wave number and wave impedance k2 . 22 . or which is locally reac-

ting. then with the normalized (with 21 ) suriace impedance Z . The sound pressure in the upper medium

be p1(r.z) . or ( it we like to indicate the source height h explicitely) p1(r.z;h) . We nonnalize with an ap-

propriate pressure Po so that the tree spherical wave of the point source reads pslr.z)/PD u

EXDUktF‘fl/(ktflrL I

By the way. this is one ntore pewlarity ol the literature. that the ootactots oi the expressions tor the

sound pressure show a large variety. Our proposal is to unity them by the normalization to a sound pres-

sure Po which easily can be determined lrom the tents which are known about the sound source. either

the pressure in 1 meter distance. or its sound power. or its volume llow.

_ in the ease cl a bulk reacting Ital/space z<0 . using kukzllq and Z=ZZIZ1 . and in the special

situation of a source height h=0 (i.e. R1=Flg=fi ) (SOMMERFELD's situation). the exact solution is:

-k‘z I yz—i

p,(r.z:0) - ydntyk‘rie
—=2(1+kZ)J 2 dy=:2(l+kZ)-l ‘(n

o 0:;y k +kZ y2 t

The generalization to non—zero source heights. mo . according to BREKHOVSKIKH, [a]. then is:

 

232 Proc.l.O.A. Vol 11 Part 5 (1989)



 

Proceedings of the Institute of Acoustics

ANALYSIS OF SPHERICAL WAVE PROPAGATION OVER ABSOHBING GROUND

(2)

This equation says that the sound tield tor an arbitrary souroe height is the direct wave minus a spherical

wave train the minor source at 5‘ (see Fig.1) plus the sound field or a source wrth zero height. but new

taken at a receiver height z+hi So, in principle. one would only need to know the sound iield tor h=o .

Eqit) is based on a decomposition oi spherical waves into zylindrical ones, [1]. By a decomposition

into plane waves which then are reilected by the plane-wave reflection tactor 1(8) . one gets:

iii ar .

 

fl- e +&
P0 kin! PD

p, "’2 ik‘H cole'
Fa =i £J°(k‘rsin9'le -rt6')-sin8’d9'+ (3)

- -k‘H sinhO" n

+ Idolk‘r cosh 8")e -/(—- re") - cosh was": n‘+ r2
0 2

with H=h+z and with the reflection tactors (4)

s 2

, chse'- ‘/ k2_1+w529' ,, _ H k2tanhe“— ‘lt —(klcosh8")
r(9)= 2 ;f(?—l8 )= 2

known 3 k — 1 +6192 9' thanh 9"». -(ir/cosh9”l

24(3) is suited lor locally reading absorbers. also. because the absorber is represented by the

reflection tactor only, which now is:

- _ Zoosa‘—1. £_- u = Zsinhe"+l
"8)" Zoosa’+t "(2 '6 ) ZsinhO"—i (5)

3. EXACT INTEGRA‘HON

The immediate numerical integration oi the exact analytical solutions ls ditticuit. indeed, The inte-

grands show irregular oscillations due to the Bessel iunction Jam) and due to the exponential tunction.

The other tactora can attain large magnitudes. So the steps or the integration variable in numerical inte-

gration schemes must be small and the integrand must be computed tor a very large number 01 values at

the integration variable (some to thousands). Then the result becomes questionable because at numerical

rounding errors.

A relatively unsophisticated method starts mm a replacement oi the 'end' oi the integration to

intinity by a decomposition ot the integral In edit) imo

yup- I 2 n

I: jut=rl+rb+lc+ld (5)
o o r 2 y",
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where the iirst two terms. la arc lb , take into account the change oi the exponent irom imaginary to real

and the neighboude oi poles oi the reflection iactor to the path oi integration. So the integration steps

must be small in these terms. They usually can be wider in the third term, to . The iourth term. id , is an

approximation to the “end”.

It yup is chosen so that yup2>>1 and yup2>>|k2| . the last integral can be approximated by

    

I 1 ' ""3 i
d-1+kZIJe(yki’)a dy=1+kz"° (7)

you

wherein the new integral Ie can be expressed by I8 = tomes) - tolowup) - —t°_0(yup) where tor the

imegrais oi the type
I

-qy1,...,.t~)_= [e y”J,,uyidr (a)
LUKE, [9]. has given recurrence relations. They lead to:

It I y
i "0Is = — e - Fot yw)

F,..(~l= A,,.(x)+ emFmrxi- cmF’Hm; m: o.-1.— 2....

in
Am“): _l._!.[k‘rJ‘(x k‘r)+(m;1—k'z)J°(x k‘r)] (9)

(lift)
2

k 2
' t y (m -1)

Bm=em—t) 2.Cm=————2

(k‘R) '(kIH)

The convergence in the recurrence tor F0 is produced bythe iactors Amtyup) which are proponle to

yup'“ with m<o . The Arn . Bm . Cm are proportional to tltiq Hie , so the remainder integral will be

proportional to t/(k1R)5 atter the iirsi rewrsion, already. The Bessel lunctions Jo ,J‘ can easily be

generated by apolynomial appproximation, With a suitable integration scheme (best suited is a Romberg

scheme with an automatic halting oi the step width oi integration until the result is stable within a preset

relative error). the computation can be programmed on a personal computer. However, because at least

about 10 steps must be placed Into a 'period" oi the Bessel functions. several thousands at steps must be

used tor large k1r in a distance plot. and the computation or one distance curve may take several hours.

The numerical examples shovm below all assume a mineral iibre absorber (this Is often applied for

modelling absorbing ground ! ), It is known. see eg. [10}. that the oharaaeristic wave number and the

characteristic wave impedance of mineral tibre absorbers can be easily computed as functions at a single

non-dimensional variable E a 21151.1) . where E is the item resistivity oi the absorber material (the

medium t is air with the wave length 11 ). The diagrams show distance airves over r/M ot the relative

sound pressure level

2 2

P‘U-Z)
L=1OI —

Nazi/Po
=1 —phi“) °'° “inn/Pu “5 no)

   

Proc.l.O.A. Vol 11 Part 5 (1939)

 



 

Proceedings of the Institute of Acoustics

ANALYSIS OF SPHERICAL WAVE PROPAGATION OVER ABSORBING GROUND

of the sound pressure ratio p1(r.z)/p"(r.z) where ph(r.z) is the sound pressure

phlhz) = eln‘fi‘ + auxin: (11)

P0 k‘R ‘ k2 Hz

above a rigid plane. 50 the diagrams do not comain the “geometrical attenuation" _due to the spherical

spread of the wave. and the reflection interference from a rigid surface for finite source heights is elimi-

nated to some degree. also.

Fig.2 is an example of a distance curve computed by the method just described for a fixed source

height h/i.‘ (in the diagrams is louk‘ ) and for several receiver heights 2111 over a bulk reacting absor-

ber plane. The imegration Iim'n was placed at yup=e and the preset relative error for the integration

scheme was 5% . A few thousands of integration steps were necessary: the generation of one curve took

about 3 hours, even w'nh the wide span of the preset relative error. The curves show the typical decrease

with the square of the distance at their far ends. Because the surface has a spring-type reactance. the

sound pressure must first decrease when the receiver height increases from zero value to small finite

values (from general considerations of the boundary condition).The curves pass this test with good result.

also. The maxima at low and medium distances where the relative sound pressure levels are positive, that

is where the sound pressure in front of the absomer is higher than in front of the rigid plane, are at such

places. where forthe rigid plane deep interference minima between the direct and the reflected waves

would be found. The depth of these standing wave minima is reduced by the absorber. This explains the

maxima.

  

4. AOCELERA'HON OF CONVERGENCE.

The above integration method is not yet satisfactory. The problems arise from the slow decrease of

the oscillations of the integrand. Another numerical integration method therefore starts from the integrals I1

. la in 94(3), which. however. are not suited for numerical lmegration as they stand due to the strong

variation of the “periods” of the Bessel functions. They first are modified by atransformation y=cos 8’ in

I, and y-sinh 8" in l2 which leads (for a bulk reacting half-space) to:

i 2 z .
kZ —"k —1+ win 7

l‘= IJOUr‘r-‘lt— y2)-—y—7—z—y—za ‘ a,
o , _ka+ it 1+y “2)

_ f z 2 .
szy— 1+y-k “My

|2=IJD(k‘r"l+y) 2 28 ' dy

° ka+ My -k

If k1H is small (or even zero). then the integrand in I: becomes small for y—iw only by the decrese of

the Bessel function Jotx) . i.e. as IN)! , which is very slow. The same holds for l in eq.(t) (where we

would have to replace 1 by H according to eq.(2) ). We therefore first apply an acceleration of comer-

gence.

 
Forthiswe write f in eq.(1)as l(a(y).b(y),c(y)) and I2 in eq.(12)as I2(A(y),B(y).C(y)) with the

factors and their asymptotic approximations for large y .
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_ ' _ 2 _alyJ—Joly k‘r) —»a_(y)— "kw oosly k‘r n/4)

r _ 1
001— Z 2 2 ably-sz (13)

y -k +kZ y -1

-k‘H lf—r 41w
c(y)=e —»c_=e

   

and:

I 2
My): J°(k‘r 1+ y )—v A_= J°(y k‘r)

k2 J: 2 k2V — + Y — [(2-1= = 14BU) 2 2—>B.. RZH ()

ka + 1+ y — k

-k‘w
C(r)= C.(y)=e

Then one evidemly has:

la.b.c)=(a.b_.c_)+ja-(bc— D_c_)dy (15)
o .

andw'nh

_ 1 1
“'ba‘ca)" 1+ k2 k‘RZ (16)

one gelslor I in eq.(l):

-kIH [y'—i 4'”,
1 1 - 1/9 ela.b.c)= *onlyk‘fH ' WV1 [<2 (17)1+ka‘R2 o 7y2_ k2+kz [—yqu +

v 

  

Here the imegrand decreases as (1/y2)-exp(-k1 Hy) . which rneanslhauhe upper integration limit musl not

be extended so lar.

Similarly we write [or I2 in eq.(12):

i2(A.B.C)=|Z(A_,B_,C)+I(AB—A_B_)Cdy (13)
o

andgel: (19)

k2 - ka Jny’ k2 ,‘z 1 -~Hy-1 1 2 ‘ ' - I12- k2” k R +I[J°(k‘r 1+y) 2 2 —J°(klry)k2+1le dy

‘ 2 u ka+ My -k

Although this looks more complicaled than eq.(15), i1 has the advamage. 1M1 lha Bessel 1uncllon is
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_ included in the acceleration pl convergence with only slow variations of the imegrand for large y which

.allows tor a reduction of the step‘number in the integration scheme. The computing time is reduced by this

acceleration of convergence by a factor of about 1/4 to 1/5 and the precision altogether is improved.

Fig.3 is a repetition of Fig.2. but now with the integral in the shape of eq.(1i'). The relative enot of

the integration was preset to 2% .FlgA shows distance curves lor zero source height above a bulk reac-

ting absorber plane (which cannot be computed by the method at eqs.(6) to (9) ).

In the case of a locally reacting absorber plane 2:0 . we start lrom eq.(2), now with

p'(r,z+ h:0) - - —kH, .
——=2sz(ykr e

Po . 9° ‘ 27,244 . (20)

which. by the way, follows lrom eq.(t) in the limit k—wn and Z representing the normalized surtace

impedance With the integral written as in eq.(15) with the testers and their asymptotics:

   

_ _ . _ y __La—a_—J°(ylr‘r).b— 2 I—DD_—Z

2 y —1—i - (21)

«‘11 —ley
c=e e

onegets:

‘ kit 1— 2
P‘(I.H:0) 2 ‘ ye“ y —k“'6’
—- = +2jJ(ylrr)|i> —a ldy+

Po kin! o 'o
(22)

  

+2jJnM‘ru
I

This can be integrated numerically quite easily by aRomberg scheme with an increase of the upper

integration limit of the second inteng by steps until the variation of the result due to such anincrease

remains under a certain Iimlt of the relative change.

The numerical example in Flg.5 is for a locally reacting hall-space or mineral libres with the same

parameters as in Fig.4. i.e. for a zero source height. Both diagrams are nearly coincident. Also for a source

height h/Mat . as in Fig.6 .the ditterence to the corresponding Fig.3 for a bulk recting absorber is

negligible.

This is a good place to come back to the remark that higher-order approximations in the literature

often are not better than the first order approximations, Such higher-order approximations often stan from

identical transformations in which - as in eqs.(15) or (18) — the same term is added and subtracted and

then the whole expression is rearranged. In eqs. (15). (18) we have separated the integral of the lirst term

on the right-hand side. it is imponam to find an analytical solution tor that Integral. Problems of precision
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may arise it lor this integral. too. approximations are used. it is important that the terms which were added

and subtracted compensate each other at least down to the 4th or 6th decimal. It both pans ot the idemical

transformation are treated ditterentty and it the precisions oi the ditierent approximations are not good

enough. the compensation will be disturbed and the linal result will be spoiled. The paper by

ATTENBOROUGH/HAYEK/LAWI'HER. [11], is a good example for Ihisr

5. PASS INTEGRATION

Most oi the discussions about the surtace waves come them the search tor approximate solutions tor

the exam analytical integrals. and mostly the method at pass integration (integration along steepest

descent) is the approximating method which is applied.

A staning poim can be aorta) in which the integral tor the retieded lield pr can be written:

p "’24" ik Noon, ‘
P_;=.- (j; Jo(k‘rsin0)e ' 1(19) smears (23’

whereol the path oi integration is shown in Fng i This solution is applicable tor the bulk reacting as well as

tor the locally reacting absorber plane depending on the reflection iador rw) which is selected. In order to

make this integral suited tor pass integration. the Bessel tunction Jotu) is replaced by the Hankel Iunction

Homtu) with the help oi the relation:

(I) (l) v
Jotui=1ELrHotu)—Ho(u em)] (24)

wnh the result:

9 r___'
F0 2

(t) ik‘H cost?

JHD (K‘l am ate in») strum-1 “a,
c

2

The path at integration 02 is shown in Fig.1 . I

For reasons which will become clear soon. we multiply and divide the integrand by exp(ik1r‘sin 0)

and obtain as the integral to be solved:

0 . item-(9-9“) (I) V —riirsrnr’ _ i '

4:519” Hotk‘rsmaw ‘I -r(13)rsmfldd=3lo (26)

2P0

The product at the 2nd and 3rd tactor under the integral then can be computed lrom

‘" - :u 1 — i 1 i
Home =W7—jll’luiw-Otuii

P(u)=1_ «92“1-9-25'49_+

  

(27)
mm 4i(8u )‘

0(u)=_;+1-9-25_1-9-25-49-81+
Bu 91 5

3!(8u) SIBU)
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It is a rather monotonous iunction tor large arguments. -

The integral In in eq.(26) is of the type

r: is” "" Fro) do (23)
C

which is appropriate tor pass integration it x (in our case MR; ) is a large real number, and ii Fte) is a

suilicientiy steady and monotonous lunction (that is the reason tor the above identical transtormation). The

exponential iactor has a saddle point (pass) in the complex o-plane which can be crossed by a pass way

so that the magnitude oi the exponential tactor is large only near the saddle point. and that it decreases

rapidly on both sides ot it along Ihe pass way. and, iunher. that it shows no oscillations along the pass way.

All these are qualities which we want tor an easy numerical integration.

These qualities make Ihe pass way not oniy aliraaive lor numerical integrations along it, but also lor

analytical approximations to the exact integral, because one can assume that only the neighbourhood oi

the saddle point will give signiticant contributions to the value at the integral. For such analytical approxi-

mations. one therefore develops the exponent and the iunclion He) by apower series around the saddle

point and takes only Ihe leading terms tor which the integral can be solved analytically. In tact. many or the

corttributions in the literature have such approximate developments as their subiea.

In order to exploit the iavourable qualities oi the pass way, which will be named P here . it is neces-

sary to transtonn the path oi integration C in eq.(2a). or Ca in our integral oi eqizfi), into the pass way.

According to Cauchy's theoreme this is possible without change oi the integral it the path ot integration

under way in this transformation does not cross singular points such as poles or branch cuts oi the

integrand. '

The discussion oi whether or not sut'J'I singularities are crossed, exactly corresponds to the discus—

sion whether or not surtaoe waves will appear. Many oi the oontroversal statements in the literature

(BREKHOVSKIKH. HABAULT/FlLIPPl. MARCUVITZ/FELSEN et al.2'Surtace waves are no problem

because they do not exist“; SOMMERFELD, THOMASSON et al.:'The existence ol suriaoe waves is

proved not only by analysis but also by experimems') have their explanation in unwarranted genera-

lisations irom one type oi absorbers to another type. It is necessary. therelore. to discuss this question

carefully.

We later shall come back to this question. Belore. we will make use oi the lavourable qualities oi the

pass way tor an exact numerical integration.

6. EXACT PASS INTEGRATION

The integration path C2 is translomred in the complex plane 0:6'+i6" lo the pass way P which

goes through the saddle point es , This Is at the place at the maximum magnitude oi the exponential

tador. which is deien-nined irom dim/dent) , which in our case is 05:80 . The pass way is determined

irom the requirement oi constant phase. to. trorn Imiltopn = const = Im(i(es)) where the index P means
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"on the pass way'. Its equation in our case is:

oosw'P — 8°)cosh is; =1

 

(25)

This. with the addition theoreme ior trigonometric iunctions, can be solved lor:

, sine scose siniui" 1 case +siri6 sinh is"
sino = 0—414 most) = ° 9. P (30)

P cosh 19 P P cosh :9 P

So the iunction ltd) in eq.(28) becomes on the pass way:

Imp]:»tanth5inhaP+i—W)-(I9F) +' (3‘)

The saddle point is at i)p"=o , that is on the real axis at i3p'=eo , it is shifted towards the right-hand side

with increasmg ea , its outmost position is at op'=ii/2 ior grazing sound incidence. The shape at the pass

way is not modified by a variation ol Bo ; it is shown schematically in Fig.8 .

All tunctions oi i‘) in eq.(26) - more precisely oi op on the pass way - now can be expressed as

iunctions oi 0p" . The reflection lactoi tor a locain reacting absomerplane (the iirst in eq.(5) ) becomes:

 

(32)

Z - [cos 60+ sin sosinh 19F — itanh 19,, - (sin 90- cos Businh 19‘,” — t __ __

no i: —‘ twp)
P 2 »[ 1

and: '

sin up = sin e,J — cos Basinna; + itanh 0'; (cos so + sin Gosinh 19;) =:sin(t9 p (33-)

cos up = cos so + sin ensinn 19p — iianh apv (sin 80 - cos Goslnhfip) =-COS<0 P)

The transition tiorn i3 to op“ is a substitution oi the variable oi imegration, The integral in eq.(28) now

reads:

 

i= fa ’ Gie'éidii; (3‘)

with

guts): i — lanh a; - sinn a; (35)

and

og(0")/d is"
" -- do n F p

= F '- = —— asGNP) (fltdplldap Fwwpn dam/do ( )

The last lactor is:

-- ~ H 2 .. 2 ,,
dgh’PNdi’P sinhflP-(Z—ianh 0P) 2-tanh 19F (37)

  

—l—_— ._ I . A. _ .,
til/(0)6" tanhaP+isinh0P i+1lcosh0P
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The wanted integral Io oteq,(26)1inally becomes (it we replace Hp" tor ease ol writing) in the

case at a locally rowing absorber plane :

I i’k‘n: - — k‘thanh with. 2 _ tanhz ¢ I (r) I —tklr sin (a)
a — e 0e mrrrwsmwwo (k,r srn( one +

. (I) I - ik‘r sm (— o) (36)
+ r<- ¢)sm( - W40 (k‘rsm - w)» ldtr

The terms in me brackets are rather monotonous. and the exponential decreases rapidly with increasing 4)

. So the number at steps is reduced to about 1/10 at the number needed tor the tormer imegrations. Even

with the more complex integrands the computing time goes down to about 1/5 .The integral is exact under

the conditions at the next sections (singularities). One essentially pays tor the reduction of step number by

a new complex argument 01 the Hankel lunction. It can be generated either by the development at eq.(27)

or by other algorithms (see eg. [12] ).

Anticipating the result at the next section. it should be mentioned that. in case the transtormation ol

the path of integration will encompass a pole at the integrand, the lollowirig term (the sunace wave term)

should be added to p/Po tor a locally reacting absorber plane :

P (I) 2 Hum J‘T‘z
”’=—27"Ha(k‘r\/t—1/2)a ‘ :Re 1-1/2 >0 (39)

Po

7. SINGULARI'I'IES WITH BULK REACTING ABSORBEHS

In the case 01 bulk reacting absorbers , the reflection tacter rte) under the integral ot eq.(26) is the

first at eq.(4). The Integrand must be checked tor singularities.

First, there is the branch cut ot the Hankel function. it is outside 1he range 01 the complex o-plane

between the original integration path C2 and the pass way P .So it is not important here.

Next. there are the branch cuts of the roots in the reflection lactor. The sign at the square root must

be selected so that the wave in the medium no.2 does not increase during propagation. It tollows from this

requirement that the Imaginary component at the root must not beoome negative. This gives an equation

between the components 13' and e" on the branch cut:

._ 1_ . 4k 'k"
a ' 2 am" sinnze“ (4°)

The two branch cuts are entered schematically as 02 irtto Fig.8 . The branch points on are at

ab-tarcsink . (4‘)
So. even it the pass way P meets the upper branchat Ihe cut 02 . it does not mange the sides at the cut

(i.e. P crosses 02 twice it at all). The branch cuts, theretore, give no separate contribution

Finally. there are poles op 01 the relleaion lactor where the denominator Dle) has zeroes. One
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immediately sees that. tor a solution on at the equation D(t‘))=0 .also - on is a solution. And with a

scluhon 0p. also 0p : it is a solution. With all signs oi the root in rto) permitted. one gets irom

(42)

 

four algebraic solutions. Their positions are indicated in Fig.8 . Evidently, the two on the left-hand side

(symmetrical lo o=-n/2 ) are unimportant. ’

Apparently it was overseen sometimes in the literature that two at the tour soiutions bring not only

the denominator oi the reflection iactor to zero butalso its nominator. Since the orders oi the zeroes are

the same, these solutions cannot be poles. This becomes imponam it one does not solve Dio)=0 tor cos

0,, as in eq.(42) but tor sin 0,, as it is done sometimes in the literature:

(43)

 

with the solutions on = : arcsin V . Taking the principal value oi arcsin . one only ilnds the zeroes ot the

nominator, not or the denominator! This can explain a pan or the contradicting statements.

Instead oi a general discussion oi the position oi the poles (see [2] ). we plot their locii quanthatively

ior mineral libre absorbers With their characteristic values computed according to [10]. The results are

shown in Fig.9 . This diagram shows — in the complex o-plane — some pass ways P ior diiierem angles 0‘

incidence 80 (see Fig.1) as computed irom eq,(30). The diagram iunher shows sortie upper branch cuts

02 as computed lrom eq.(4oi tor some absorber parameters E . The diagram next shows the auxiliary ‘

functions kZ and :kZ-U ircm which U=ccs on is constructed. Finally. the‘diagram shows the IOCus ol

the poles tor a continuous variation oi E where the arrows Show into the direction at increasing E .

One sees that even in the extreme situation 80=tr12 . i.e. source and receiver in the plane z=o . the

pass way — fer a bulk reacting mineral fibre absorber- does not encompass the pole. The pass way under

this condition only approaches the pole tor low valuesoi E , i.e. tor low frequencies and/or high ilow

resistivity. Because under the same conditions the zero at the nominator (the locus at which is the mirror

curve oi the pole locus relative to the point 0-1t/2 ) approaches the pass way also, one ol the conditions

lor an approximate pass imegration is violated, namely a rather steady iunction Fit» in eq.(28). it is no

wonder. theretore. that many approximations have problems under these conditions. Applying the exact

pass integration, one must not add an extra term lot the pole contribution.

Two iunher remarks concerning the literature have their right place here. The lirst is, that SOMMER-

FELD, dealing with bulk reacting absorbers only, has used as a pole the solution with positive imaginary

argument tie. the zero oi the nominatcr tor our typeoi the absorber). Therefore his results cannot be

adopted immediately to a porous sound absorber. That is why one cannot call SOMMERFELD to come

lorward as a witness tor the existence oi a pole contribution (i.e. suriace waves) with bulk reacting porous

sound absorbers.
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The next observation is, that sound absorbing grounds in the literature clten are modeled as bulk

reacting mineral Iibre absorbers and the absorber parameter E is determined by titting measured curves

to computed ones. Small values at E are tound. corresponding to large values oi the equivalent llow

resistivity oi the ground model. A problem then arises it the original DELANY/BAZLEY parameters. [13].

are used, As was shown in [14], these original parameters give rise to problems lor small values of E (e.g.

negative resistance oi an absorber layer). it one applies the DELANY/BAZLEY tonnulas with their

parameters. the lows ot the pole in Fig.9 would indeed cross the pass way tor large angles on and tor

low values of E (Ior details see [2) ). So a separate pole oemnbution should be taken imo account.

One conclusion thereoi is: whether or not a pole contribution with bulk reacting absorbers eirists

depends also on the absorber model which is used in the computations. The answer may be ditlererrt lor

electromagnetic absorbers (and there depending on the polarization at the wave), tor underwater absor-

bers and lor diiierent kinds ot bulk reacting absorbers lor air-borne sound.

it a pole contribution would be needed. it is obtained by encircling the pole with a small lobe. staning

and ending at the pass way and. alter application at the residuum theorems, it can easily be computed to

be:

2
P k2 1k Hi) (i)
-P—m=-2m'-(—)2Ue‘ H°(kIrV) (44)

° 1 - (iiZ )

Because of lmlul>0 (see Fig.9 ) l the sound pressure iield decreases exponentially with increasing

distance oi the receiver (and oi the source) train the absorber plane, This contribution therelore is a

suriace wave.

8. SINGULAHI'HES WITH LOCALLY REACTING ABSORBERS

It should be possible to give an answer to the question of the importance ol singularities in

connection with the pass integration for locally reacting absorbers which is independent lrom the absorber

model, because the only signltlcant mant‘dy tor the description at the absorber, its surtace impedance Z .

can assume any values with non-negative real components.

Branch arts are only these or the Hankel function. They are unimponant because already the

original path oi integration (:2 avoids them. A pole ol lirst order (as long as not both 2:1 and sourrJZ) is

at the zero of the denominator ol the reflection lactor me) from eq.(5) which is located at op with

one on a — 1/2 (45)

We apply Fig.1!) tor a discussion at this question. There the pass way P is shown in its rightmost

position lor Guardz . First we consider only (tor reasons ol a sirmle representation) surlace inuedances 2

within the lirst quadrant (with a diagonal hatching) and here we restrict the range (tor the same reason) to

the range outside the unit circle. This range will be transtormed by 1/2 into the right-hand lower section ol

the unit circle (with diagonal hatching) and by the change oi sign into the left-hand upper sector oi the unit
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circle. This is the range tor values 01 cos pp . Using

cos d = cos o’cosh r9“- isin o'sinh r9" .

one sees that 09' must bein the range between m2 and 1t and that 6p" must be negative. The three

corner points ol the unit circle sector, is. o . -1 and i , are encircled in Fig.10 and are transposed to the

OOWESDOrlding range oi op . which also has a diagonal hatching, One sees. that the partial area with the

vertical hatching below the pass way will give a pole contribution. ll one traces back this range of pole

mntflbutions (marked by a vertical hatching) into the Z-plane. one realizes that it is close to the positive

imaginary axis.

It is easy to show that the impedances 2 at the Iirst quadrant within the unit circle will till up the strip

in the op-plane with n12 5 ep' 5 1t and ep"<o . A part at these impedances can give pole contributions.

also. and it is not surprising that these irnpedances are near to the imaginary Z-axis.

It the impedance Z is tron-i the lourth quadrant, one can show by aquite similar argumentation that

the corresponding values oi op will titl up astrip with n12 5 ep' 5 1r . but now with positive op" . so that

they can never be reached by the pass way P .

The results at these discussions are:

.- there are surtace impedances tor which an extra pole contribution at eq.(39) must be

added.

- these impedances all have a negative reactance ( in the explicit) convention). "‘3

reactance is at the type ol a spring. ’
- the range at the impedances is close to the reactance axis.

- its size is the larger the more the angle 60 approaches n12.

USing the description cl eq.(3D) tor the pass way. it is not difficult to derive a quantitative condition tor

the application at the pole contribution at eq.(39). It reads:

[cos 8° +tl/Z)'][1+ cos 60 v (1/2 H
.. 1[Z s

(1 ) < sin 80

 

(t/Z)'+ (1/2 )‘2 (46)   1+2C05 a

With the sign rule tor the rectance of Z tor a pole contibution, one immediately sees trorn eq,(39)

that the sound lield at this contribution decreases exponentially with increasing distance horn the absorber

plane. The pole contribution is a surtace wave.

Some remarks should be made irt this context. First: nobody. to the author’s knowledge. up to now

has realized that the range at the pole contribution tor locally reacting surface pllanes coincides exactly

with the range of the existence ot tree two-dimensional surlace waves over such planes (see [2]). Second:

it surtace waves shall exist with a significam strength, they must be excited by the spherical wave, to the

tree spherical wave must "ottar' this wave type to a plane. BREKHOVSKIKH has shown that the

decomposition ol a spherical wave into plane waves above a plane is not possible with ordinary plane

waves only. one has to add waves 01 the surtace wave type parallel to that plane. So the excitation is no

problem. Third: most locally reacting absol’oers (and especially absorbing grounds) start at low lrequencies
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with a spring type reactance.

So it remains only the second part of SOMMERFELD’s question. whether the strength at the surface

waves can be relevam at all.

9., NUMERICAL EXAMPLES

Fig. 11 shows distance curves of the relative level 01 mm“ for surtace impedances with constant

resistance Z'=2 and with different reactances Z" which change their sign. Source and receiver are in the

plane 1:0 . One clearly sees that the sound pressure level above the absorber for spring type reactances

can be much higher at medium distances than the sound pressure level in front of a rigid plane. Behind

that range ol hlgh pressure levels there is a steep slope at the level down to the usual longoistance

behaviour which is indicated by the distance curves with negative reactances.

Even more instructive are oomour diagrams oi the sound pressure levels. Fig. 12 is an example

Ihereot. lsobere are plotted in a vertical plane containing the source. The sound pressure p, above the

absorber now is relative to the sound pressure p5 of a tree spherical wave.The vertical axis is logarithmic

for mo 2 1 and tinearfor mo 5 1 . The source is in the absorber plane for this figure; the reactance is

mass type. Only the sign of the reactance is changed in the next diagram. Fig.1.? . One dearly sees the

range of the predominant surtace waves close to the sunace. followed by a steep descem. There is no

speclal observation at larger heights of the receiver. The pair of Fig.14 and Flg.ts are for larger

magnitudes of the impedance conponents. The range of predominant surtace waves has shifted to larger

distances. Fig.16 tinalty gives an example for a non-zero height of the source. A minimum of interference

betweeen the direct and the reflected waves is visible. The situation close to the sunace has not changed

very much.

10. APPROXIMATIONS IN THE LITERATURE

we now have a number of exact integrations available. Their results are in penect agreement With

each other. So one can check existing approximations. There exists a large number at approximations for

the exact integrae in the literature. Many of them are discussed in [2]. The quality with respect to precision

and to amount of prgramming can be quite dillerent. Complicated approximations do not deliver always

better results.

An approximation was derived by BREKHOSKIKH, [e], which is very instmctive. It reads:

t R

p’ °l ‘ alrie i ’_. = o _
Po k‘Hz 2 Irina

where rteo) and r"(80) is the first and the second derivative. repectivety. otthe reflection factor with

respect to 80 .It shows the transition to the geometrical acoustics for reflection factors with no angular

dependence and/or at large distances k1 Ra . It also makes clear that the range of nearly grazing inci-

dence. 80 about rdz , is critical becaus there the reflection factor is known to be strongly dependent on the

angle of incidence. This approximation can be used for both locally and bulk reactlrg absorbers with the

corresponding reflection faders. Possiny a pole contribution n'nrst be added for a locally reacting absorber.

  

(r"(8°)+ r'(8°) colflofl . (47)

Proc.l.O.A. Vol 11 Part 5 (1939) 245



 

  

   

Proceedings ot the Institute of Acoustics

ANALYSIS OF SPHERICAL WAVE PROPAGATION OVER ABSORBING GROUND

The best approximation tor locally reacting absorbers with respect to precision seems‘to be that at

THOMASSON. [7]. Quite good also is the approximation given by DELANY/BAZLEV. [15] and that at

NOBILE. [16].

1‘. REMARKS TO EXPERIMENTAL STUDIES

The experimental studies in the literature desenre some comments also. because there sometimes

happen strange things. The main interest in expenmemal studies lies in the sound propagation over

absorbing ground.

The technique mostly applied is that at “parameter tilting”. Experimental distance curves or

trequency cuNes are compared to-numerical results which were generated on the basis at an approxi-

mation to the exact solution and at an absorber model. men the ‘lree parameters" oi that model are tuned

to give a best agreement.

A lavourite model for ground is a hall-space oi bulk-reacting mineral libres. The equivalent liow

resistivity is the final quantity which is wanted as a characteristic lor the ground. It is a strange thing, that

the bulk reacting model otten is cormared to an approximation which was derived tor a locally reacting

absorber - and vice versa !

The inventive genius ot some authors tor ground models seems to be inexhaustible. A model at an

elastic plate was compared with this parameter tilting technique to an anlysis tor a locally reacting plane.

The author was not aware that he would have to compare with the theory at spherical waves over an

elastic plate which is quite clitierem,

Authors deliberately use numerical results for grazing incidence as soon as they place their loud

speaker and their microphone at low heights They are not aware that already minor deviations trot-n

grazing incidence would change the numerical results drastically. Even tithe source and the receiver are

placed on the gound, would it not be reasonable to make lirst a sensitivity analysis of the linal result at the

parameter titting technique with respect to linite angles or incidence which effectively can be produced by

temeperature gradients and by wind gradients ?

And a final question: why do experimenters who compare their experimental results against ana-

lytical results not go the straigjht way ? Just determine these quantities which are required by the theory.

namely surlace impedance (impedance lor plane waves at normal incidence) tar locally reacting rrlodels

and characteristic constants tor buflt'reacling models ! '
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P0,!)

EULA; Syslem and coordinates
S : source of spherical waves
5': mirror source
P : receiv'er

x
u
u
a
o
s

  
ELLE Distance curves 0! sound pressure level above

bulk reacting absorber relative to field above rigid plane.

computed by numerical Integration 0! analyhtzl exacl integral
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Elm Distance curves of sound pressure level above
bulk reacting absorber relative to field above rigid plane.
computed by numerical integration ol analytical exact integral
alter acceleration nl convergence. -

E=z,/5x . =.01

   
394; Distance curves of sound pressure level above

bulk reacting absorber relative to lield above rigid plane.
computed by numerical integration 0! analytical exact integral
alter convergence acceleration.
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Elflu'u Distance curves cl sound pressure level above
locally reacling absoroer relalive to field above rigid plane.
computed by numerical pass integration ol analylical exact integral

   
Elm Distance curves ol sound pressure level above

locally reaming absorber relallve in field above rigid plane.

camputed by numerical passinlegration of analytical exam integral.
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ELL.- intsgran’on paths for pass integration and .singularin'es

101 different ansomer parameters E oi a bulk waning
mineral film; absorber al diflerenl angles 01 incidence.
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M To lbs conditions for a pole contribution ('Pole')
mm a locally reacting absorber plane.
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flail; Distance curves oi sound presSure level above
locally reacting absorber relau’ve to field above rigid plane.

compuied by numerical pass integration ol analytical exacl integral.

lOr surlaoe impedances with different Sign 01 reactanoe.
O
'
I
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E13. 12: Contour plol cl sound pressure level

relative in sound pressure oi free spherical wave

over a locally reacting absorber plane
Wllh given surface impedance Z.
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M Contour plot ol sound pressure level relative to sound
pressure oi flee spherical wave

over a locally reaming absorber plane
with given surlaoe impedance 2 will! posilive rem-lance.  

M Contour plot 0! sound pressure level
relative to sound pressure oi free spherical wave

over a locally reaming absorber plane
with given surlace impedance Z.
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Figl 15' Conlour plol oi sound pressure level
relalive to sound pressure of lien spherical wave

over a locally reading absorber plane
WIH‘I given surface impedance 2 0' positive reactanoe.  

a
m
n
m

fig. 1&- Contain plot of sound pressure level
relative lo sound pressure of free spherical wave

war a locally reaming absorber plane '

with given surraoe Impedance 2 wllh positive reactanoe.
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