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1. INTRODUCTION

The subject of this contribution is a problem which in this year celebrates ils 80th birthday and which
still is alive, i not vivacious — an impression which one gets if one counts the number of papers written in
the last years obout this topic. It came into the world by SOMMERFELD ‘s paper. [1], in 1909. Sommerfeld
was inferested in an analytical axplanation of the observation of unexpected long rangas of radic waves
propagaling over sea. So he treated the propagation of spherical electromagnetic waves over an absorbing
iinfinite plane. His explanation of the long range propagation was lhe existence of surface waves which are
guided along the surtace.

The intention ol the prasent contribution is to make some remarks to the peculérities of the literature
in this fiekd and to give soma new solutions which may help to tinish some controversial discussions. A
more detailed discussion will be found in a torthcoming book, [2).

A citation trom SOMMERFELD 's paper may serve as guidelina:
"There exist two opposite opinions which - at least in a general sense — can be characterized by
the conflict betwaen “volume waves” and "surface waves”.... This interasting wava lype up to now
was mainly hypothetical. There was ne proof that it is devalopad from 1he waves which are radiated
Irom the source. It is a main task of the present investigation to supply this proof and to decide the
quastion: volume wave or surface wave.”
And then he makes a restriction:
"It must be stated from the vary beginning, that the answer will not be the same under all conditions
and in all cases, because quile generally our simplified notations and conceptions mostly can
describa only some borderding cases adequately, and cannot reprasent the generat compiexily of
the phenomena.”
This may be summarised by: “The existance of surface waves can be shown in principle, Iheir importance
in a concreta situalion is still open”. This, howaver, is different from tha statemant in one of the papers of
HABAULT/FILIPP, that the surtace wave is nothing else but a mathematical artefact which only appears i
one applies a special method of approximation to the exact solution and which {in their own solution) does
not appear in the numerical results neither.

Afirst pecularity of the literature is, that generally RUDNICK, [3], is said to have been the lirst, in
1947, 10 ransfer the elsctromagnetic solutions to sound lields. This is not true. The first was SCHUSTER,
[4], whe, in 1939, not only has traated the porous half-space, but also an absorber layer of finite thickness
in front of a rigid wall, tor which HABAULT/FILIPP!, [5), claim priarity. f must be said, howevar, that SCHU-
STER just has applied the electro-acoustic field analogies to SOMMERFELDs solutions, so he has not
been aware that, in general, the eleciromagnetic solutions cannot be adopted to sound absorbers
immediately (see baiow),
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Anoiher pecularity of the literature lies in the fact, that approximate results are mostly compared
against each other. The numerical imtegration of 1he exact solution is said to be loo complicated to be per-
tormed. It is hard, on this basis, lo judge on the relative merits of different approximations. So it is no won-
der that HABAULT/FILIPPY, [6], on this basis declare the results of THOMASSON, [7], to be wrong because
in THOMASSON ‘s approximation can appear sound pressure levels above an absorbing plana which are
much higher than above a rigic plane, a result which — at the tlrst glance — is curious, indead, and which
was not found by HABALLT/FILIPP! in their approximation.

A turther pecutarity of the literature must be mentioned in this context. Semetimas higher-order ap-
proximations are described. If, however, one applies them for numerical computations, one realizes that the
results mostly are not much better than from the first-order approximations - or even worse, So the higher-
order approximations have to be ruled out as a judge between difterent first-order approximatlons.

It is on this background that methods for direct numerical solutions of the exact equations are est-
mated to be of primary importance. Such solutions will be dascribed shorlly in what follows. Next the dis-
cussion about the suriace waves should be decided. Il can be shown thal the motor for this long-lived dis-
cussion are a number of misunderstandings.

2. EXACT SOLUTIONS

The time factor be exp(-ict) , as usual in the llerature. The geomelry is depicted in Fig.1 . A point
source is placed in S on the z-axis in a heigm h above the absorbing plane z=0, the receiver is at P{r.z)
in a radial distance r from the z-axis and in a height z . Tha plang z=0 separates the upper medium with
the characteristic wave number and wave impedance kq , Zy trom the lower medium which is either bulk
reacting, then with the characteristic wave number and wave impedance kg, Zy , or which is locally reac-
ting, then with the normalized (with Z ) surface impedance Z . The sound prassure in the upper madium
be p4(r.2) . or { it we like to indicate the source height h explicitely ) py(rz:h) . We normalize with an ap-
propriate pressure Pq so that the free spherical wave of the point source reads pg(rz)/Pg =
explikqRq)i(k1Aq) . ‘

By the way, this is one more pecularity of the literature, that the colactars of the expressions tor the
sour] pressure show a large variety. Qur proposal is to unify them by the normalization to a sound pres-
sure Py which easily can be determined from the facts which are known about the sound source, either
the pressure in 1 meter distance, or its sound power, or its volume flow,

" iInthe case of a bulk raacting haif-space z<0,using k=kpfky and Z=Zp/Zy , and in the special
situation of a source height h=0 (i.e. Rq=Rz=A } (SOMMERFELD's situation), the exact solution is:

-klz f y’—1

p,tr. z:0) = ydglpkrie i
_P°_=2(1+kZ)JJ . 2 = dy =24 + kZ) 1 {1
O ¥ -k +kZNfy -1

The generalization 1o non-zero source heights, h=0 , according to BREKHOVSKIKH, [8], then is:
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p‘(r,z:h}_ e:‘k‘R‘ ) e:‘klnz ) pi(r.z+h;0) (2}

Po k1R1 k1 Rz Pn
This equation says that the scund figid for an arbitrary source height is the direct wave minus a spharical
wave (rom the mirror source at S’ (see Fig.1) plus the sound field of a source with zero height, but now

taken at a receiver height z+h . So, in principle, one would only need to know the sound field for h=0 .

Eq.(1) is based on a decomposition of spherical wavas into zylindrical ones, {1}. By a decomposition
into plane waves which then are reflected by the plane-wave reflection factor r(8) . one gets.
ik R
Py o¢'' Pr

.
Po kAR, Py

ri2

2, rk|H' cos &' , . .
FO_; [ Itk sin@e - r(@°)-sin8 d8'+ 3)
-k1H sich® "’ T
+ IJo(k1rcosh8")e S ri5 - i87) cosh® d@ =il +1,
o 2
wilh H=h+2z and with the raflection factors (4)

- 2 " o2
s KZcbs@ - K —1+c08°@ .. KkZtanh@ - 4/1-(kicosh&")

g - 8=

. Jz 2z _, . .2
kZcosB8'+N k ~1+c08 @ kZ1anh & '+ ~f1-{k/icosh@®™’)

Eq.(3) is suited for focally reacting absorbars, also, because the absorber is reprasented by tha
rellection factor only, which now is:

. L0858 -1, o o ZSiNh® '+
8= St 3~ =Sime (5)

3. EXACT INTEGRATION

The immediate numerical integration of the exact analytical solutions Is difficult, indeed. The inte-
grands show irregular oscillations due 1o the Bessel funiction Jg{u) and due to the exponential function.
Tha other factors can attain large magnitudes. So the steps of the integration variable in numerical ime-
gration schemas must be small and the integrand must be computed for a vary large number of values of

the integration variable (some 10 thousands). Then the result becomes questionable because of numerical
rounding emors.

A relatively unsophisticated methog starts from a replacement ot the “end” of the integration to
infinity by a dacumposition of the integral in eq.(1) imMo

Yo

.i+f+f+l +Id ‘ (6)

1

a‘—.!
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where the first two tarms"..r 1a and Iy, take into account the change of the exponent from imaginary 1o real
and the neighbourhoed of poles of the reftaction factor 1o the path of integration. So the integration staps
mus! be small in these terms. They usually can be wider in the third term, |, . The fourth term, Iy , is an
approximation to the "and”. ‘
I yyp is chosen so that yyp2>>1 and Yup2>>/k?| , the last integral can be approximated by
i 1

d 1+

- —yklz - 1
= ,,j Joly krie =iz e (N
-

wherain the new integral Ig can be expressed by lg = fg gl=) - f5 o(Yup!) = —10,0(¥up) where for the
integrats of the type

x
. -
fm‘n(l.' ’.= J'e me "( ty}dy )]
LUKE, [8]. has given racurrance relations. They lead to:
KZy
1 up
l,=-¢ - Falrg!
Folk)= Agx)+ B F  (X)=CpF _ (x);m=0-1-2,..
m
Anlx )=~k r J (x e+ (=1 -k 2)d (x k)] e)
e A)
2
k2
: 1 (m-1)
Bm=em—1) 2,Cm=--—-----—2-
{k,R) (k,A)

The convergence in the recurrence tor Fq is produced by the factors Am{yup) which are proportional to
yup™ Wilh m<0.The Ay ,Bm,Cm are proportional to 1i{kqR)2 , 30 the remainder integrat will be
proponional to 1!(k1Fl}5 after the first recursion, already. The Bessel tunctions Jg , Jy can easily be
generated by a polynomial appproximation. With a suitable integration scheme (best suited is a Romberg
scheme with an automatic halfing of the step width ot integration until the rasuft Is stable within a preset
relative ermr), the computation can be programmed on a personal computer. However, bacause at least
about 10 sleps must ba placed into a "period” of tha Bessal functions, several thousands of Sleps must be
used for large kyf in a distance piot, and the computation of one distance curve may take several hours.

The numerical examples shown below all assums a mineral fibre absorber (this Is often applied for
modelling absorbing ground ! ). It is known, see e.g. [10}, that the characteristic wave number and the
characteristic wave impedance of mineral fibre absorbers can be easily computed as functions of a single
non-dimensional variable E =Z4/(EA¢) , where E is the flow resistivity of the absorber material (the
medium 1 is air with the wave length A4 ). The diagrams show distance curves over rfi4 of the rejalive
sound pressure level

‘{p,tr.zj
L=101

P2

2 2
plr2)P,

—_— dB
P 2ZVP,

(10)
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of the sound pressure ratio pqir.2)/pp(r.z) where pn(r.z) is the sound pressure
P2} - e‘k'ﬂ' . elkzﬂz (11)
P0 k1R \ [ s R'2
above a rigid plane. So the diagrams do not contain the "geometrical attenuation” due to the spherical
gpread of the wave, and the reflection interlerence from a rigid surtace for finite source heights is elimi-
nated to some degree, also.

Fig.2 is an example of a distance curve computed by the methed just described for a lixed source
height tvky (in the diagrams is 30“*1 ) and for several receivar heights 2/Aq over a bulk reacting absor-
ber plane. The integration limit was placed at y,_,p=a and the preset relative error for the integration
scheme was 5% . A few thousands of integration steps were necessary; the generation of 0he curve took
about 3 hours, even with the wide span of the preset relative error. The curves show the typical decrease
wilh the square of the distance at their far ends. Because the surface has a spring-type reactance, the
sound pressure must first decrease when the receiver height increases from zero value to smalt finite
values (from general considerations of the boundary condition) The curves pass this test with good result,
also. The maxima at low and medium distances where the relative sound pressure levels are posilive, that
is where the sound pressure in front ot the absorber is higher than in tront of the rigid plane, are at such
places, where tor the rigid plane deep inlerference minima between the direct and the reflected waves
would be found. The depth of these standing wave minima is reduced by the absorber, This axplains the
maxima.

4. ACCELERATION OF CONVERGENCE.

The above integration method is not yet satistactory. The problems arise Irom the slow decrease of
the oscHlations of the integrand. Another numerical integration method therefore starts from the integrals |4
. l2 in eq.(3), which, howevar, are not suiled for numerical imegratidn as they stand due to the strong
variation of the "periods” of the Besse! functions. They lirst are moditied by a transformation y=cos 8" in
ly and y=sinh @7 in l» which leads {for a bu/k reacting half-space ) to:

1 /2 2 L aH
2‘k2y- k -1+y e“‘ ¥

= £J°(k1r 1-y)

dy
2 2
ka+\/k-1+y (12)

- 2 2 B
_ z kZy-~f1+y -k -kHy
lz-‘_];JD{k‘r-\hd-y ) 0

KZy+ -\/ 1+ yz - k2
I kqH is smail {or even zero), then the integrand in 1 bacomes small for y—= only by the decrese of
the Bessel tunction Jy(x) | i.e. as 1+x , which is very slow. The same holds for | in eq.(1} (where we
woulkd have to replace z by H according o q.(2) ). We therefors first apply an acceleration of conver-
gence.

dy

For this wa write 1 ineq.(1) as l{a{y).b{y).cly)) and o ineq.{12) as Ia(Aly),B(y).C(y)) withthe
factors and their asymptotic approximations for farge y .
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o 2 _
a[y):JO(y k1r] - a_ly)= rrk1ry cos(y k'r nid)
‘I
bly)= {13)
\/y —k +k2\,!y -1
-kH/ -k ¥
clyl=e —>c =e

and:

2
A(y):JO(k Ff1+y° 1> A..=J0(Y k1r]
-\f1+y —k
k2y+-\/1+y —k

-—kh}'
Cly)= C.ly)=¢

Then one evidently has:

kZ - 1

kZ + 1 (14)

B{y)=

- B.=

Kab.c)=Nab,.c)+[a (bc-b c)dy (15)
[+]

and with

_ 1 1
(a.b. )= Tz R (18)

one gets for 1 in eq.(1):

‘kHJ —kH’y
17)
-\[y—k . K2 fy-1 1+kZ (

Here ihe inlegrand decreases as (1Iy2)'exp(-k1 Hy) . which means that the upper integration limit must not
be extended so far.

Ka.b,¢)=

1+kaR *IJ el

4

Similarly we write for 1o in eq.(12):

|2<A.B.C)=|2<A_,5_,c:)+j(As—A_,B_:cay (18)
0
and gat: ' (19)
kZ -1 2 K2y - 1y - 1, ~NHr
d
2= dE v 3 H le y

°(k.r 1+y " J(kry}kZ+1
K2y + af1+ ¥ -k

Although this looks more complicaled than eq.{15), it has the advaniage, that the Bessel function is
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] _ihcll.ided in the acceleration of convergence with only slow variations of the integrand for large y which
"allows for a reduction of the step number in the integration scheme. The compuling time is reduced by this
acceleration of convergenca by a factor of aboul 1/4 to 1/5 and Ihe precision alttogether is improved.

Flga isa repelmcn of Fig.2, but now wnh the imtegral in the shape of eq.(17). Tha relative ermor of
the integration was presetto 2% [Fig.4 shows dislance curves lor zero source height above a butk reac-
ting absorbsr plane {which cannot be computed by the method of eqs.(6) o (9) ).

In the case of a locally reacting absorber plane z=0 , we start from eq.(2}, now with
pr.z+ h.0) ]ﬂ y KM @ o
——— =22 |J (¥k r e ay
] ! T
Py S o 1 7 yz - . {20)

which, by the way, follows from eq.(1) in the limit k—e and Z rapresenting the normalized surface
impedance. With the integral written as in ¢q.{15) with the factors and their asymplolics.

a= a_=Jo(r’k’r);b=7:—-——’ f?,:‘}?‘
Zafy -1-1i : (1)
-k H vt -k Hy

c=@ S C.=8

one gels:
N 2
p(r ,H:0) I

—= k +sz (i 5 -8 ' ldy+ :
0 1 :;1—y +1Z C(22)
_Ir1H/y2—l o

afz_(.ln(yv”r)[’”'2 -8
1 :;y—1-HZ

This can be imegrated numerically quite easily by a Romberg scharme with an increase of the upper
integration limit of the second integral by steps until Ihe variation of the result due to such an increase
remaing under a certain limi of the relative change.

Jay

The numerical exampla in Flg.5 is for a locally reacting hatl-space of mineral fibres with the same
parameters as in Fig 4, i.e. for a zero source height. Both diagrams are nearly coincident. Also for a source
height Wa4=1, as in Fig.6 . the differance to the corresponding Fig.3 for a bulk racling absorber is
negligible.

This is a good place to come Back to the remark that higher-order approximations in the literature
oftan are not better than the first order approximations. Such higher-order approximations often start from
tentical transformations in which — as in eqs.{15) or {18) - the same term is added and subtracted and
then the whole expression is rearranged. In egs. (15), (18) we have separaled the integral of the first tarm
on the right-hand side.  is important to find an analytical solution for that integral. Problems of precision
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may arise il for this integral, too, approximations are used. i is important that the lerms which were added
and subtracted compensate each olher at least down lo the 4th or 6th decimal. if both paris of the identical
transformation are treated ditferently and if ihe precisions of the ditferent approximations are not good
enough, the compensation will be disturbed and the tinal resutt will be spolled. The paper by
ATTENBOROUGH/HAYEK/LAWTHER, [11], is a good example for this.

5. PASS INTEGRATION

Most of the discussions about the surface waves come from the search for approximate solutions tor
the exaq) analylical integrats, and mostly the method of pass integration (integration along steepest
descent) is the approximating method which is applied.

A staning poim can be eq.(3) in which the integral for the rellected held pr ¢an be written:

Ai2—iw .
P, ik M cos B

. . . 23
ot cj) Joik rsind)e | r{9) sin B dv ) (@3)

whereof the path of integration is shown in Fig.7 . This solution is applicabte for the huik reacting as well as
for the 1ocally reacting absorper plane depending an the reflection factor r(9) which is selected. In order to
make this imegral suited for pass integration, the Bessel function Jglu) is replaced by the Hankel lunction
Hgl{u) with the hetp of the refation: :

(h (M ;
1 mn
)= E[“o W)-Hgy (ue ;] (28)
with the result:
p’ i R!] n‘k1H cos & )
—_ E I H {k1r Sl et} r(dh wn o do 126
C

The path of integration Cp is shownin Fig.7 .

For reasons which will become ctear soon, we mulliply and divide the integrand by exp(iky r-gin 9)
and obtain as the imegral to be solved:

lchos(o—B) U] —ikran o ] i :
-4 ? * H, tk rsindle ' - (Y- Stnﬂdt’=5|° (26)

N

The product of the 2nd and 3rd tacter under the integral then can be computed from
4] ) .
-w_1-i 1 .
H, ()™ =~ ve vl AARECTE

Pl =1- 1-92 1.9 25 49 . n
248u) 41(8u)

Quy=-L. 1% 25 182549 ‘81,
6u) 51Bu)
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1t is a rather mongtonaus function for large arguments. .
The integral Iy in q.(26) is of the type

-f
1= Jo*' ' Fioyan

(28)
c

which is appropriate for pass integration # x (in our case kR ) is a large real number, andit F{d) isa
sufficiently steady and monctonous tunction (that is the reason for the above identical transformation). The
exponential factor has a saddle point (pass) in the complex 9-plane which can b crossed by a pass way
so that the magnitude of the exponential factor is large only near the saddle poinl, and that it decreases
rapidly on both sides of it along (he pass way, and, lurther, that il shows no osciflations along the pass way.
All thesa are qualities which we wart for an easy numsrical imegration.

These qualities make Ihe pass way not only atiractive for numerical integrations atong it. but also for
analytical approximations to the exact imegral, because one Can assume that only the neighbourhood of
the saddle point will give signilicant contributions to the vatue ol the intagral. For such anatylical approxi-
mations, one thersfore develops the exponent and the function F(2) by a power series around the saddle
point and takes only ihe leading terms for which the integral can be soived analytically. In tact, many of the
contributions in the literalure have such approximate developments as their subject.

in ordler to explait the favourable qualilies of the pass way, which will be named P here . it is neces-
sary 1o transform the path of integration C in eq.(28), or Cgo inour integral of eq.(26), into the pass way.
According to Cauchy ‘s theoreme this is possible without change of the integral il the path of integration
under way in this transformation does not cross singular points such as poles or branch cuts of the
integrand. )

The discussion of whether or not such singulariies are crossed, exaclly comespands lo the discus-
sion whether or not surface waves will appear. Many of the coniroversal statemaents in the Iterature
(BREKHOVSKIKH, HABAULT/FILIPPI, MARCUVITZFELSEN et al.~Surlace waves are no problem
because they do not exist”; SOMMERFELD, THOMASSON et al."The existance ol surlace waves is
proved not only by analysis bui also by experiments”) have their éxplanation in unwarranted genera-
flisations from one type of absorbers to ancther type. it is necessary, theretore, to discuss this question
carefully.

Wa later shail come back to this question. Before, we will make use of the favourable qualities of the
pass way lor an exact numerical integration.

6. EXACT PASS INTEGRATION

The imegration path Cp is transtormed inthe complex plane §=0"+j8" 10 the pass way P which
goes through the saddle peimt 0 . This Is at the place of the maximum magnitude of the exponential
tacter, which is determined from di{&}/df=0 , which in gur case is 95=8g . The pass way is determined
from the requirement of constant phase, |.e. trom Im{f(dp)} = const = Im{i{t)} where the index P means
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"on the pass way". s equation in our case is:
cos(#, - G;)coshd, = 1

(2%9)
This. with the addition thearame for tigonometric functions, can be solved for:
. sin@, - cos 8, sinh v, | cos@ +sin@sinho,
sing_ = — 9 ° £ cosp = 0 ° 30)
P cosh P cosh 3
P P
So the function {9} in eq.(28) baecomes on the pass way:
f(r3P1=—tanhﬂPSInhﬂP+r—v)-(ﬂP) + 1 {31)

The sadd'e point is at 8p =0 , that is on the real axis at 9p =8y , it is shifted towards the right-hand side
with increasing 8y , s outmost position is at Bp'=w/2 for grazing sound incidence. The shape of the pass
way is not moditied by a variation of g ; i is shown schematically in Flg.8.

All functions of @ in eq.{26) — more precisely of 0p onthe pass way - now can be expressed as
tunctions of dp . The reflection factor for a locally reacting absorber plane (the first in eq.(5) ) becomes:

{32)
Z - [cos 8, + sin B sinh d , - itanh B ;- (sin®, - cos Businh #p) -1 .
(o )= = r(8,)
P Z. L]
and: :
sinv, = 5in @, - cos B, sinh 9, + itanh ¥, - (COs @, + sin B, sinh B ) =:8iN(H ;) 9

= i inhe - i " (sing - inh ¢ ) = cos(d
cosd, =cos @ +sind sinhy - ilanhd - (sin cos g sinh & ) P )

The transition from & to 9p™" is a substitution of the variable of integration. The integral in eq.{28) now
reads:

T ox gt 5 3
{= ,J..e G, ) dd, . (34)
with
. . . 5
giv,)= i ~tanh &, - sinh 9, (35}
and
ago.pd s,
. .. dy . P P
=F LY - _ 36
Glo,) mw"”dﬂp FiB(d,) af(oyd 9 38)
The last lactor is:
. . . . 2 . 2 '
dg(ﬂp)fq:jp_—smh:_‘lp-(z—tanh up)=_ 2-tanh 9, a7
di(oyds tanh o + i sinh i+ Vicosh o),
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The wanted integral Iy of eq.(26) finally becomas (it we replace g=ip ~ for ease ol writing} in the
. case of a locally reacting absorber plane :

| J‘kﬁa - . k‘ﬁa fanh gsinh@ 2 _ tanha ] ) {7 ) - l'k|r sin {p )
p=@ 09 m[f(ﬂﬂ)sm(?wo (ke rsind @ +
) ) ‘ - ik rsing- 9) (38)
+ (- pisin( - @H_ {k rsin{ - P 1 do

The terms in the brackets are rather monotonous, and the exponertial decreases rapidly with increasing ¢
. So the number of steps is reduced to about 1/10 of the number needed for the formar integrations. Even
with the more complex integrands the compuling lime goes down 1o about 1/5 .The integral is exact under
the conditions of the next sections {singularities). One essentially pays for the reduction of step number by
a now complex argument of the Hankel function. t can be generated either by the development of 2q.(27)
or by other algorithms {see e.g. [12] ).

Anticipating the result of the naxt section, it should be mentionad that, in case the transformation of
the path of integration will encompass a pole‘of the imegrand, the following term (the surface wave term)
should be added 10 p/Pq for a locally reacting absorber plane :

Pp__2a 0 [T 7 -kHZ I
— == —H_(kraf1-12Z )e cRav1-1Z >0 (39)
F'o Z 01

7. SINGULARITIES WITH BULK REACTING ABSORBERS

In the case of buik reacting absorbers , the reflection factor r{6) under the integral of 8q.(26) is the
first of @q.(4). The integrand must be checked for singularities.

First, there is the branch cut of the Hankel function, #l is outside the range of the complex ¢-plane
between the original infegration path C, and the pass way P .So it is nol important here.

Nenxt, there are the branch cuts of the roots in the reflection factor, The sign of the squara roo! musl
be salected so that the wave in the madium no.2 does not increase during propagation. It follows from this
requirement that the imaginary compenent of the root must not become negative. This gives an equation
betwasan the components 4" and 4" on the branch cut:

1 . Ak kT
¥'= —aresin ————
2 sinh2g "’ (40)
The two branch culs are enterad schematically as Qo into Fig.8 . The branch points by, are at

dp=tarcsink . : (41)

S0, even il the pass way P meels the upper branch of the cut Qp , it does not change the sides of the cut
{ie. P crosses Qo twice if at all). The branch cuts, therelore, give no separate contribution.

Finally, ihere are poles f}p of the reflection facior where the denominator D(D) has zeroes. One
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immediately sees that, for a solution 6p of the equation D(9)=0 . also - 6p is a solution. And with a
solution ﬂp Ldlso dp is a sofution. With all signs of the root in {8} permitied, one gets from

cos{ t ﬂPt)= (42)

four algebraic solutions. THeir positions are indicated in Flg.8 . Evidently, the two on the left-hand side
(symmetrical 1o @=-m/2 } are unimpornart. ’

Apparémly it was overseen sometimes in the literature that two of the four schutions bring not only
the denominator of the retlection factor to zero but alsa its nominator. Since the orders of the zeroes are
1he same, these solulions cannot be poles. This becomes impontant i one does not salve D{8)=0 for cos
ap as in eq.(42) but for sin ﬂp as it is done sometimes in the litarature:

(42)
sin(x B,)=%

with the solutions dp = + arcsin V . Taking the principal value of arcsin , one only finds the zerces of the
nominator, not of the denominator! This can explain a part of the contradicting stalements.

Instead of a general discussion of the position of the poles {see [2] ), we plot their locii quantitatively
for mineral fibre absorbers with their characteristic values computed according ta [10]. The results are
shown in Fig.9 . This diagram shows — in the complex 9-plane — some pass ways P for differem angles of
ncidence By (see Fig.1) as compuled from €q.(30). The diagram further shows S0me upper branch cuts
Qo as éomputed from eq.{40) for some absorber parameters E . The diagram next shows the auxiliary
functions kZ and +kZ-U from which U=cos B, is constructed. Finally, the.diagram shows the locus ol
the pales tor a continuous varialion of E where the arrows show into the direction of increasing E .

One sees thal even in the oxtreme siluation 8g=r/2 . i.e. source and recever in the plane z=0, the
pass way - for a bulk reactng mingral fibre absorber — does nol encompass the pole. The pass way under
1his condition onty approaches the pole for low values of E . i.e. for low fraquancies and/or high flow
resistivity. Because under the same conditions the zero of the nominator (the locus of which is the mirror
curve of the pole lacus relative to the point d=m/2 } approaches the pass way also, one of the conditions
for an approximate pass integration is violated, namely a rather sleady function F(9) ineq.(28). tis no
wonder, therelore, thal many approximations have problems under these condilions. Applying the exad
pass integration, one must not add an extra term for ihe pole contribution.

Two luriher remarks concerning the literature have their right place here. The lirst is, that SOMMER-
FELD, dealing with bulk reacting absorbers anly, has used as a pole the solution with positive imaginary
argument (i.e. the zero of tha nominalor for our type of the absorber). Therefore his resufts cannot be
adopted immediately to a porous sound absorber. That is why ene cannot call SOMMERFELD to come
torward as a witness for the existence of a pole conlribution (i.e. surface waves) with bulk reacting porous
sound absorbers,
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The next obsarvation is, that sound absorbing grounds in the fterature cften are modeted as bulk
reacting mineral libre absorbers and tha absorber parameter E is determined by fitting measured curves
to computed ones. Small values of E are found, corresponding to large values of the equivalent flow
resistivity of the ground model. A problem then arises If the original DELANY/BAZLEY parameters, [13),
are used. As was shown in [14], these original parameters give rise to problerns for small values of E (e.g.
nogative resistance of an absorber layer). If one applies the DELANY/BAZLEY formulas with their
parameters, the locus of the pole in Fig.9 would indeed cross the pass way for large angles @g and for
fow values of E (lor defails see [2] ). S0 a separate polepomthion shoutd be taken inte account.

One conclusion theraol is: whether ar not a pole contribution with bulk reacting absarbers exists
depends also on the absorber model which is usad in the computations. The answer may be ditferent for
slectiromagnstic absorbers (and there depending on the polarization of the wave), for underwater absor-
bers and lor differen kinds ot bulk reacting absorbers for air-bome sound.

It a pole contribution would be needed, # is obtained by encircling the pole with a small lobe, staning
and ending at the pass way and, after apptication of the residuum thecreme, it ¢an easily be computed to
ba:

2 R
P 7.4 ik HU (1)
__"’=-2m"—’2Ue " Hg (kW) (44)

Fo 1-02)

Bocause of Im{U}>0 (see Fig.B ), the sound pressure field decreases exponentially with increasing
distance of the receiver (and of the source) rom the absorber plane. This contribution theretore is 4
surlace wave.

8. SINGULARITIES WITH LOCALLY REACTING ABSORBERS

it should be possible to give an answer to the question of the importance of singularities in
connection with the pass integration for focally reacting absorbers which is independent from the absorber
model, because the onfy signfiicant quaniity for the description of 1he absorber, ils surlace impedance z,
can assumé any valuas with non-negative real componants.

Branch cuts are anly those of the Hankel function. They are unimponam because already the
eriginal path of integration Co avoids them. A pola of first order (as long as not both Z=1 and Bg=n/2) is
al the zero of the denominator of the reflection factor (8} from eq.(5) which is located at O with

o8 p o~ 1/Z (45)

We apply Flg.10 for a discussion of this question. There the pass way P is shown in its rightmost
position for Bg=n/2 . First we consider only {lor reasons of a simple representation) surface impedances Z
within the first quadrant (with a diagonal hatching), and here wa restrict the range (for the same reasen) to
the range outside the unit circle. This range will be transtormed by 1/Z into the right-hand lower section of
the unit circle (with diagonal hatching) and by the change of sign intd the let-hand upper sector of the unit
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circle. This is the range for values of cos dp . Using

€os ¥ =Cos ¥-¢osh 8" - isin #'sinh 8",
one sees that iy’ must be in the range betwean w2 and r andthat 4p™ must be negative. The three
cormer paints of the unit circle sector, i.8. 0. -1 and i, are encircled in Fig.1¢ and are transposed 1o the
corresponding range of 9, which also has a diagonal hatching. One sees, that the partial area with the
vertical hatching below the pass way will give a pole contribution. If one traces back this range of pole
cantributions (marked by a vertical hatching) into the Z-plane, one realizes that it is close 1o the positive
imaginary axis.

It is 2asy to show that the impedances Z of the lirst quadrant within the unit circle will fili up the strip
inthe dp-plane with w2 <dp < and Op"'<0 . A part of these impedances can give pale contributions,
also, and it is nol surprising that these impedances are near to the imaginary Z-axis.

If the impedance Z is from the fourth quadrant, one can show by a guite similar argumentation that
the corresponding values of 8 will fill up a strip with n2 < ﬁp' S n, but now with positive ﬁp" , 50 that
they can never be reached by the pass way P .

The results of these discussions are:
« there are surface impedances for which an extra pole contribution of q.(39) must be
added, '
« these impadances all have a negalive reactance ( in the expi-iwt) convention), the
reactlance is of the type of a spring, ‘
* the range of the impedances is close to the reactance axis,
» its size is the larger the more the angle 8¢ approaches 2.

Using the description of 2q.{30) for the pass way, it is not ditficult to derive a quantitative condition tor
the application of the pole coniribution of 8q.{39). It reads:

[cos 8, + V2 )]l + cos 8 - aZy)

#2ye - s'n19 2
: i
0 ‘/t +2cos@ - MZ)Y+QZY 48

With the sign rule lor the rectance of Z tor a pole contibution, one immediately sees from eq.{39)
that the sound field of this contribution decreases axponentially with increasing distance from the absorber
plane. The pole contribution is a surface wave.

Some remarks should be mada in this context. First: nobody, to the auther’s kmwpedge. up 1o now
has realized that the range of the pole contribution for focally reacting surface pilanes coincides exactly
with the range of the existence of free two-dimensional surlace waves over such planes {see [2)). Sacond:
it sunace waves shall exist with a significant strengih, they must be excited by the spherical wave, i.e. the
free spherical wave must "offer” this wave type to a pléne. BREKHOVSKIKH has shown that Ihe
decomposition of a spherical wave imto plane waves above a plane is not possible with ordinary plare
waves only, one has to add waves of the surface wave type parallel to that ptane. So the excitation is no
problem. Third: most locally reacting absorbers (and especially absorbing grounds) starn at low frequencies
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with a spring type reactance.

S0 it remains on.ly the seéond par of SOMMERFELD s question, whether Ihe strength of the surface
waves can be relevant at all.

9. NUMERICAL EXAMPLES

- Flg. 11 shows distance curves of the ralative lavel of py/pp for surtace impedances wilh constant
resistance Z'=2 and with difterent reactances Z°~ which change their sign. Source and receiver are in the
plang z=0 . One clearly sees that the sound pressure level above the absorber for spring type reactances
can be much higher at medium distances than the sound pressure level in fronl of a rigid plane. Behind
that range of high pressure lavels thera is a steep slope of the level down 1o the usual long-distance
behaviour which is indicated by the distance curves with negative rgactances.

Even more instructive are-conour diagrams of the sound pressure levels. Fig. 12 is an example
therect. lsobars are plotted in a vertical plane containing the source. The sound pressdre py above lhe
absorber now is relative to the sound pressure pg of airee spherical wave. The vertical axis is logarithmic
for ZZAg 2 ¥ andlinear for ZAg < 1. The source is in the absorber plane for this figure; the reactance i
mass type. Only the sign of the reactance is changed in the next diagram, Fig.13 . One clearly sees the
range of ihe predominant surface waves close to the surface. followed by a steep descent. There is no
spacial observation at larger heights of the raceiver. The pair of F1g.14 and Fig.15 are for larger
magniludes of the impedance components. The range of predominant surface waves has shifted to larger
distances. Fig.16 finally gives an example for a nen-zero height of the source. A minimum of intarference
batweesn the direct and the reflected waves is visibla. The situation close to the surface has not changed
very much.

10. APPROXIMATIONS IN THE LITERATURE

We now have a number of axact integrations available. Their results are in perlect agreement with
each other. So one can check existing approximations. There exists a large number of approximations for
tha exact integrals in the Iterature. Many of them are discussed in [2]. The quality with respect 1o precision
and o amount of prgramming can ba quite diteren. Complicated approximations do not deliver always
better resulls.

An approximation was derived by BREKHOSKIKH, {8], which is very instm&live. It reads:
"R,

. r_ 8

7, kA, [r {8} - 2kR

whare r'(8g) and r(8g) is the first and ihe second derivative, repactively, of the reflection factor with
respect to 8y .1t shows the transition to the geometrical acoustics for reflection factors with no angular
dependence and/or at large distances k1R2 . It also makes clear that the range of nearly grazing inci-
danca, @y about /2, is critical becaus there the reflection factor is known 10 be strongly dependent on the
angle of incidence. This approximation can be used for both locally and bulk reacting absorbers with the
comesponding retiection factors. Possibly a pole coniribution must be added for a locally reacting absorber.

(r(8y)+ r'(8,) col 8,)] . CY]
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The best approximation for locally reacting absorbers wilh respect 1o precision seems’to be that of
THOMASSON, [7]. Quite good also is the approximation given by DELANY/BAZLEY, [15] and that of
NOBILE, [16).

11. REMARKS TO EXPEAIMENTAL STUDIES

The experimental studies in the literature deserve some comments also, because there samelimes
happen sirange things. The main inlerest it experimental studies lies in the sound propagation over
absorbing ground.

The technigque mostly applied is that of "parameter fitting”. Experimental distance curves or
frequency curves are compared to-numerical results which were generated on the basis ot an approxi-
mation 1o the exact solution and of an absorber model. Then the “free paramaters” of that modet are tuned
fo give a best agreement,

A tavourile model for ground is a halt—space of bulk-reacting mineral fibres. The equivater flow
resistivity is the final quantity which is wanted as a characteristic for the ground. It is a strange thing, thal
the bulk reacting model often is compared to an approximation which was derived for a locally reacting
absorber — and vice versa !

The inventive genius of soma authors for ground models seems to be inexhaustible. A model of an
elastic plate was compared with this paremeter fitting lechnique to an anlysis for a locally reacting plane.
The author was not aware that he woukd have to compare with the theory of spherical wavas over an
elastic plate which is quile ditferent.

Authors deliberately use numerical resulls for grazing incidence as soon as they place their loud-
speaker and their microphone at kow heights. They are not aware that already miner deviations from
grazing incidence would change the numerical results drastically. Even if the source and the receiver are
placed on the gound, would it not ba reasonable 1o make first a sensitivity analysis of the linal result of the
parameter fitting technique with respect to finite angles of incidence which effectively can be produc.od hy
lemeperature gradients and by wind gradients ?

And a final question; why do experimenters who compare their experimental results against ana-
Iytica results not go the straigjht way ? Just determine those quantities which are required by the theory,
namely surface impedance (impedance for plane waves at normal incidenca) tor locally reacting models
and characteristic constants for bulk reacting models ! '
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P(r,z)

fig. 1: System and coordinates
§ : source of spherical waves
S’ mirror source
P : receiver

AOHBOS
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Fig.2: Distance curves of sound pressure level above
bulk reacting abscrber relative to field above rigid plane,
computed by numerical integration of analytical exacl integral.
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Fig.3: Distance curves of sound pressure lovel above
bulk reacting absorber relative to field above rigid plane,
computed by numerical integration of analytical exact mtegral
after accederation of canvergence.
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Distance curves of sound pressure lovel above
bulk reacting absorbar relative o fieid above rigid plane,

computed by numarical integration of analytical exact integral
aftar convergence acceleration.
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Fig.5: Distance curves of sound pressure level above
locally reacting absorber relative to tield above rigid plane,
computedd by numerical pass integration of analytical exact integral.
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Flg.6: Distance curves of sound pressure level above
locally reacting absorber relative to field above rigid plane, )
camputed by numerical pass integration of analylical exact integral,
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F 34
integration paths
a: io eq.{23)
b: 1o eq.{25)

Fig. 7:

: passway, Cp: branch culs,

P

Ty : sacdie point, By : branch points, ap . poles,

integration path for pass integration
Co : original path,
60 . angle of incidence
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Elg.® ; Integration paths for pass integration and .singulariﬁes
for different absorber parameters E of a bulk reacting
mineral fibre absorber at different angles of incidence .
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Fla. 10: To the conditions for a pole contribution (*Pole™
with a locally reacting absorber plane .
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Flg.11: Distance curves of sound pressure level above
locally reacting absorber relative to field above rigid plane,
computed by numerical pass integration of analytical exact integral,
for surface impedances with different sign of reactance .
Lpypy) Whg= 2=2-14
100 v —— . T
[ | / :
'+ dB z
r N -
21, / )
10] - o e g e g A ;
/ S
s yd / 18
v VY s
/ / .
o~ 4
o .
- 'f‘ 4/!/ // A
-~ i .
1 ;)(A“A_.‘._..,l_.'-v JRRPE A S
- / // : 4 I
_/.,.:" [ E/p/ / . /
o - / / i / %
1 10 100 kg 1000

Flg. 12: Contour plot of sound pressure level
relative to sound pressure of free spherical wave
over a locally reacting absorber plane
with given surface impedance Z .
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Flg. 13: Contour plot of sound pressura leval relative to sound

pressure of free spherical wave

over a locally reacting absorber plane

with given surface impedance Z with positive reactance .
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Flg, 14; Contour plot of sound prassure level
relative to sound pressure of frea spherical wave
over a locally reacting absorber plane
with given surface impedance Z .
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Fig, 15; Contour plot of sound pressure level
relative to sound pressure of free sphercal wave
ovar a locally reacting absorber plana
with given surface impedance Z of positiva reactance .
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Eig. 16: Contour plot of sound pressure level
relative to sound pressure of free spherical wave
over a locally reacting absorber plane
with given surface impedance Z with posilive reactance .
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