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1. INTRODUCTION

This paper describes a continuous speech recognition system developed at the Centre for Speech

Technology Research (CSTR) as part of the Alvey/IED Integrated Speech Technology Demon-

strator Project, Results are given for experiments with isolated words and connected speech from

several speakers. Companion papers [1,2] describe work byCSTR‘s industrial partners in this

project, in which the same training and evaluation data have been used.

The organisation of the paper is as follows. Section 2 describes the design philosophy and structure

of the recognition system, and the system parameter settings currently in use. Section 3 describes

experiments conducted to evaluate its performance, and presents the results, in the form of per-

phone entropy for the acoustic-phonetic front end, and utterance and word error rates for the

system as a whole. Section 4 contains some concluding remarks, assessing the system and its

performance results and indicating directions for further development.

2. DESCRIPTION OF THE RECOGNITION SYSTEM

2.1 Overall Structure and Design Philosophy

The speech recognition system described here has been designed to be used as a tool for research

into the enhancement and optimisation of recognition techniques. The requirements for such a

purpose are rather different from those for a ‘production’ system, in which utterance recognition

accuracy is of the first importance and real-time operation is strongly desirable. In a research

system, real-time recognition is not required since most experiments are performed on prerecorded

data, and it may be acceptable to sacrifice some optimality in recognition accuracy for the sake of

ease of examining the performance of system components and isolating and correcting causes of

error.

The main feature of the design of this system which contrasts with that of most successful contin-

uous speech recognition systems [3,4] is its modular structure. ..

Systems designed for realztime recognition usually rely on an integrated top-down strategy in which

syntactic and lexical constraints control the operation of the acoustic-phonetic matching. Only

signal processing (which may include vector quantisation) is carried out in a bottom-up direction;

the modelling of individual speech units (such as phonemes) and the language modelling (imposing

constraints on the sequence of such units) are integrated into what is effectively a large transition

network, from which the best match to the output of the signal processing is found by a dynamic

.programming operation (typically limited by a beam-search strategy for computational efficiency).
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In the CSTR modular recognition system, the recognition processing is divided into two compo-

nents, the front end and the back end. The front end takes in the speech to be recognised, and

generates a lattice of probabilistically scored hypotheses of acoustic-phonetic units (APUs). (In the

simplest case, the APUs are phonemes, but it is possible to refine this, as described below.) This

is done without any use of higher-level linguistic information, as to the words in the vocabulary or

the syntactically permitted sequences of words. The baclt end takes in the APU lattice and finds

a path through it corresponding to an estimated best-matching sequence of words permitted by

its language model. The back end makes use of lexical information (a representation of each word

in the vocabulary in terms of the APUs) and syntactic information (defining what word sequences

are permissible); it also incorporates APU substitution, insertion and deletion probabilities, which

can be trained on lattices generated by the front end for known utterances.

The modular structure allows the front end and the back end to be evaluated and optimised

separately. The performance of the front end can be evaluated by ananalysis of the lattices it

produces. A mathematically well-founded evaluation measure, which is an estimate of the entropy

(per phone) of a lattice, has been devised and is described in a previous paper This measure

can be used to determine optimal values for various parameters in the front end. The lattices can

also be examined in detail to identify specific aspects of the front end's performance which need

to be improved. Then, once lattices have been constructed for a set of utterances. the back end

can be run repeatedly with these lattices as input, using difl'erent parameter settings, different

lexicons, and different language models, to test the cfiects of these variations, without any need to

repeat any of the front-end processing.

The front end and back end currently implemented are described in next two subsections.

2.2 The Front End
The front end in this system is a refinement of that described in [5], based on the use of discrete

hidden semi-Markov models (HSMMs).

The speech to be recognised is sampled at 10kHz. The start and end times of the utterance are

found using adaptive thresholds on signal magnitude, and regions of the data beyond these points

are discarded. The signal processing, performed in a 20ms Hamming window every 5ms, consists

of a Nth-order LPC analysis to generate cepstral coefiicients. together with the estimation of

three log formant frequencies using a generalised centroid algorithm [6]. For each Sms frame, a

28-dimensional acoustic feature veclor is derived, consisting of 11 cepstral coefficients (from the

Oth to the 101h) and three log formant frequencies from the frame 20ms before the current time,

together with the corresponding values from the frame 20ms after the current time. This vector

implicitly incorporates both static information (with some smoothing in the time dimension) and

dynamic information. A linear transformation, based on a discriminant analysis among a set of

acoustic-phonetic classes, is applied to this vector, yielding a lO-dimensional discriminant feature

vector. The sequence of such feature vectors representing the input utterance is converted into a

sequence of integer labels (in the range from 0 to 255) by vector quantisation (VQ).

The llSM M component performs the two tasks required to generate a lattice. Firstly, it deter-

mines the start and end times ofthe segments in which APU hypotheses are to appear. The basic

segmentation algorithm is a one-stage connected Viterbi algorithm, which determines the acousti-

cally best-matching sequence of APU models together with the corresponding sequence of segment

boundary limos. Each APU is represented by a three-state model, with a simple left-lo—right
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topology (without skip transitions) and a Gaussian duration distribution for each state. APU
sequence probabilities of the form P(next APUIcurrent APU), estimated from a corpus of tran-
scribed speechI are used to guide the segmentation. In the traceback stage of the segmentation,
multiple segmentations of regions of the input can be derived by analgorithm which finds local
maxima of the overall probability up to the current segment boundary time as a function of the
most recent previous boundary time. Secondly. once the segments have been defined, probability
scores for all the APUs are derived in each segment. (in fact. if the multiple segmentation option

is in useI these scores are obtained as a by~product of the local-maxima computation.)

Various postprocessing operations [5] are applied to the scores computed by the HSMM component,
to optimise the relative probability estimation. The output of the front-end processing is a lattice
of segments each with astart time, an end time and a set of scaled negative log probability scores
for all the possible APUs. The lattice is well-formed in the sense that each segment has abutting
left and right neighbours. so that a continuous path can be traced through the lattice.

The'set of APUs currently in use consists of phonemes, allophones (released and unreleased stops,

clear and dark /l/, etc.), and some phoneme sequences such as /tr/ and /e]/ where modelling at
the phoneme level is unsatisfactory because of the strong interaction between successive phonemes.

There are 98 units altogether, including silence (which is needed because the endpoint detection
may leave non-speech regions at the beginning and end of the utterance, and because some utter-

ances may contain pauses between phrases).

The probability scoring can be enhanced by ahierarchical probability estimation technique [7].
Once the start and end times of a segment have been defined, revised scores are computed for
the APUs in each of a set of broad classes, using a discriminant feature space, VQ codeboolt and
models specific to the broad class. The conditional probabilities of the form P(APU|broad class)
derived from these scores (by normalising so that the probabilities sum to 1 within each broad
class) are combined with the probabilities P(broad class) obtained by summation ofthe APU scores
estimated in the original feature space, to yield revised estimates of the probabilities P(APU) for

all APUs. The set of APUs is currently partitioned into two broad classes, of 45 and 53 APUs
respectively, corresponding roughly to the classifications ‘sonorant' and ‘non-sonorant’. The power
of the hierarchical scoring technique lies in the discriminant transformations applied to derive the

acoustic feature spaces: the feature space specific to each broad class is optimised to discriminate

among a set of fine acoustic-phonetic classes within that broad class, and will thus capture more
ell'ectively the information that is useful for APU discrimination within thatclass (e.g. formant
frequencies rather than cepstral coefficients, or dynamic rather than static information).

2.8 The Back End
The back-end program reads the APU lattice and attempts to find the best sentence which matches
this lattice. This sentence must consist of words in a dictionary (or lexicon) of known words and
must be grammatical with respect to a grammar. This matching is done by a chart based dynamic
programming algorithm (implemented in Common Lisp). The DP algorithm is left—to-right, beam-
searched. breadth-first search. it is carried out in two stages which run in parallel: word recognition
and sentence recognition. Word recognition consists of finding the best phonetic match to words in
the lexicon which the grammar allows. Sentence recognition then combines these found words with
existing partial sentence hypotheses to form longer partial sentences. The output of the back end
is a list of likely recognised sentences, with scores indicating their estimated relative probabilities.
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The lexicon of known words is implemented as a directed graph, with edges labelled with APUs.

Nodes which correspond to words have a pointer to information about those words. Edges also

have attached a set of tags or word classes, which specify the set of words which can be reached by

following this edge. This information is used to dynamically restrict the size of the lexicon under

the control of the grammar, so that words which cannot be used by any of the current sentence

hypotheses are never looked for. Multiple APU pronunciations of words are stored in the lexicon

and are generated automatically from a set of phonemic transcriptions written by a phonetician.

The interface between the back end and the syntax is a general procedural interface toga grammar.

The present experiments use a simple finitestate grammar because of the simplicity of the test

language, but previous work has used probabilistic grammars [9] or GPSG style phrase structure

grammars.

in order to match lexical word pronunciations against realistic lattices, the DP algorithm has to

allow insertions, deletions and substitutions oiAPUs. In contrast to some systems, these insertions

etc. are not coded in the lexicon but are handled separately. Each pair of lexical APU and lattice

APU has a confusion cost, e.g. c(t:d) would he the penalty paid by the DP algorithm for allowing a

lattice /d/ to match a lexical /t/. These costs are trained by a standard Viterbi algorithm. Unlike

the normal DP algorithms deletions of lattice material are handled by only allowing the deletion of

a special /DELETE/ APU which is present in each segment of the lattice. One oversimplification of

this approach is that e.g. the probability of deleting a segment does not depend on the surrounding

context.

a. EXPERIMENTS AND RESULTS

3.1 Linguistic Domain and Speech Data

The linguistic domain selected for these experiments was taken from the field of air traffic control

(ATC). A finite state syntax was defined and a set of 100 sentences conforming to this syntax was

generated. Each sentence consisted of an aircraft call sign followed by one or two other phrases.

The average number of words per sentence was 10.9, or 12.6 including pauses (which occurred

between phrases, and were counted as words for the purpose of the back-end processing).

A list of words occurring in the ATC domain was also generated; there were 98 distinct words

(though the list was 101 words long because of three duplications). A subset of the 98-word

vocabulary consisted of the digits from ‘zero' to ‘nine’.

Four malespeakers of non-rhotic British English each spoke the 100 sentences once, and also

provided five repetitions of the words in isolated word format for use as training data, and two

repetitions ofall the words and 10 further repetitions of the digits for use as test material for isolated-

word recognition. There were also available utterances by each of the speakers of 200 sentences

(designed for good coverage of every phoneme in a range of contexts) as training material for

continuous speech recognition; and of a further 170 sentences, drawn from a domain of dictated

cytology reports, which were used in training the substitution, insertion and deletion probabilities

for use in lexical access.

Each speaker was recorded in a sound-treated booth using a Shure SMIOA unidirectional dynamic

head-worn microphone connected to a Shore FPl] microphone-iodine amplifier. The signal was
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oversampled at 80 kHz with 16-bit resolution using an analogue antiAaliasing filter, then filtered
using a digital 64-tap low-pass filter with cutofl' at 7.5 kHz and downsampled to 20 kHz. The speech
data used in the recognition experiments were low-pass filtered with a digital 256-tap low-pass filter
set to a cutofl' of 4.75 kHz and downsampled to 10 kHz.

3.2 Design of Experiments
Three sets of recognition trials were conducted, one on the connected sentence utterances and two
on the isolated word utterances (the ATC words and the digits respectively). In each case the

recognition system operated in speaker-dependent mode.

The front end parameter settings were determined by experiments on the cytology utterances from
one of the speakers (GSW), using his training sentences with amanual phonemic segmentation
to train the discriminant analysis, codebook and APU models. These preliminary experiments
confirmed that the extended APU set (in contrast to the basic set of 44 phonemes plus silence), the
extended acoustic feature set with discriminant analysis and the hierarchical probability scoring
improved the performance of the front end. (This was assessed using the per-phone entropy
criterion.)

The discriminant transformation, codeboolt and models derived from GSW’s hand-segmented
training utterances were used to initialise the training procedure for continuous speech recognition
for each speaker. First the target speaker‘s training utterances were segmented by an automatic

procedure using Viterbi alignment with a transcription of each utterance in terms of the APUs.
(The transcriptions were generated automatically from a phonemic lexicon, and were structured
as directed graphs. rather than simple sequences, soas to include multiple variant pronunciations

of each word and optional word-boundary assimilation and reduction effects.) The resulting seg-
mented data were used to construct a discriminant transformation, a codebook and APU models

for the target speaker. These were then used to segment the training utterances again, and the
APU models were retrained on the basis of this revised segmentation. Also broad-class-specific
discriminant transformations, codcbooks and models were derived from the same segmentations.

Lattices were constructed, using the front end with the chosen parameter settings and the speaker-
specific models, for each speaker’s cytology utterances, and these were used to estimate the APU

substitution, insertion and deletion probabilities for the back end (by running the lexical access
process with a syntax which allowed only the correct recognition for each utterance, and iterat-
ing over the set of utterances). This was done for each speaker separately. Lattices were then
constructed for the ATC sentences, and the back end was applied to recognise these.

A similar procedure was followed in the case of the isolated words. In this case, the initialisation
was based on a set of isolated words recorded from GSW, which had been hand-segmented, and

the training for each speaker used the five training repetitions of the ATC words. (At first the
models trained for connected speech were applied to the isolated word recognition task, but the
entropy results were so muclL poorer than those for continuous speech that this approach was
discontinued.) The discriminant transformations and VQ codebooks used for the continuous speech
recognition were retained for the isolated words. The back-end probabilities estimated on the
cytology sentences were likewise retained.

Because the system had been developed on continuous speech, the endpoint detection parameters
were not optimal for isolated-word utterances, and, since endpoint detection accuracy is particu-
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larly important for good recognition performance in the case of isolated word recognition, some

adjustment of the parameters for isolated words was performed.

For the ATC sentences. the back end used a finite state syntax, of perplexity 2.40 at the word

level. For the isolated words, the syntax permitted a pause (corresponding to 0 or more segments

in the lattice), any single word from the current vocabulary, and then a pause.

8.3 Results
For each of the three experiments, two types of results are reported: entropy results for the

front end, and recognition results for the system as a whole. In the case of sentence utterances,

the recognition results subdivide into utterance recognition accuracy and a word-based accuracy

measure. The word-based measure adopted is the weighlzd total error measure [8], defined by

N5 + ND/2 + Nr/2
Tw = 100 x NP

where N5 is the number of word substitutions, NB the number of word deletions, N1 the number

of word insertions, and Np the number of words in the correct recognitions of the utterances.

The results on the ATC sentences are shown in table 1. The lattice entropy is expressed in bits

per phone; the smaller it is, the better the lattices. The percentage figures {or utterance and word

errors are based on the best-ranked sentence hypothesis (i.e. the first in the list generated by the

back end) for each utterance, with those based on the most nearly correct hypothesis in the top 10

for each utterance p'ven in parentheses. Many of the errors were confusions among the digits, such

as recognition of ‘one' as ‘niner', and ‘two’ as ‘nero‘. The truncation of some utterances during

endpoint detection meant that sentence-final 'minutes' was also not detected reliably, especiale

{or speaker HB.

Table 1: Continuous speech recognition results (100 ATC sentences per speaker)

entropy . 2 115 2 532 2.487
utterance error rate . . 17.0 (11.0) 22.0 (17.0) 8.0 (6.0)

word error Tw . . 2.7 3.6 . _ ,

 

The results for the isolated word recognition experiments on the ATC vocabulary are shown in

table 2. Some of the errors were confusions between pairs of words such as ‘five'l‘fife’, ‘tree’/‘three‘

and ‘lefi'l‘left', which would not be significant in practice because the words are synonyms in the

ATC domain. Another source of errors was when in words such as ‘ob' and ‘eh' the long vowel

was split into two segments by the front end.

Table 2: Isolated word recognition results (SS-word ATC vocabulary: 202 words per speaker)
, _ ‘ . , ,

1.590 3.623 2.334 2.183
   |

3.9 0.5 5.9(1.5 6.4 1.0 6.9 1.0

The results for the isolated digit recognition experiments are shown in table 3. The two errors
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were on utterances of ‘eigbt' (recognised as ‘tbree’, because of noise at the beginning) and ‘five’
(recognised as ‘nine‘).

Table 3: Isolated word recognition results (digits; l00 words per speaker)

   
entropy
utterance error rate

4. CONCLUDING REMARKS

The modular recognition system has proved a useful research tool and has served as a testbed
for a number of innovative techniques. including hierarchical probability scoring and the extended

acoustic-phonetic unit set in the front end, and various optionsfor substitutions, insertions and

deletions in the back end. Having an intermediate level of representation between acoustic fea
tures and the recognised sentence — namely the lattice of APU hypotheses — allows detailed

examination of the performance of the front end and the back end, which is very useful during

the development of speech modelling techniques. Also the entropy measure computed at the APU

lattice level is a more sensitive criterion for optimising front-end parameters than utterance or

word recognition accuracy.

In the results for the ATC sentences, some degree of correlation is evident between the trend
in per-phone entropy across the speakers and the corresponding trend in recognition error rates.

This is as might be expected. The entropy is a measure of the probability assigned to the correct

recognition (expressed as a sequence of APUs, or a network of such sequences to allow for variant
pronunciations), relative to the total probability for all possible APU sequences. The lexical and

syntactic constraints cut down the set of possible APU sequences from which the correct one is

to be chosen. The more constraining the lexicon and syntax are, the less closely correlated the

probabilities of the correct recognition with and without the constraints will be. In this case the

lexicon and syntax are fairly strongly constraining, and so only a weak correlation is observed.
The entropy results are more general in that they measure the front end's performance without
the assumption of any particular lexicon and syntax. \

The correlation between entropy and recognition error does not hold good in the case of the

isolated words, especially the digits, where two speakers (GSW and JMR) have very poii‘rentropy
scores but no recognition errors. The reason for the poor entropies lies in the endpoint detection.

For good word recognition performance, the endpoint detection parameters must be set so that

there is little danger of cutting off the end (or the beginning) of a word. Given the difliculty of
distinguishing between low-amplitude spec-ch sounds and breath noise, this means that non-speech

intervals will tend to be included. This may not introduce errors in the recognition of the words,

since the ‘silence' hypothesis usually scoreswell in non-speech segments and this is allowed for

in the isolated word syntax. It does, however, seriously afl'ect the entropy value. since this is
computed without any constraints on APU sequences, and so initial and final sequences of several
consonant hypotheses, which often have good scores in non—speech segments, are permitted as

competing incorrect recognition candidates which substantially worsen the entropy. This efl'ect is '
particularly strong for short utterances. This is one instance in which APU lattice entropy is an
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unreliable guide to likely recognition accuracy. The practical conclusion is that endpoint detection

parameters should not be optimised using the entropy criterion.

Some problems remain in the estimation of the substitution, insertion and deletion costs. Some

of the possible pairs of lexical and lattice APUs do not occur in the estimation data, and this

can cause errors when the unseen substitutions are required in the tat data. Also, the training

algorithm produces deletion costs which are far too law; this problem will he addressed, but in the

meantime the deletion cost is set to an empirically derived constant value.

Various further enhancements to the system are under development, including the introduction

of context»specific APU modelling (a variant of interpolated triphone modelling) in the front end,

and a context-specific APU deletion mechanism in the back end [10].
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