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In this paper, the probability distribution of Von Mises stress for plate-shell complex structure 
subjected to multiple-dimensional random excitations is studied. Firstly, for a linear system, 
each stress component is unrelated with each other and can be regarded to be zero mean 
Gaussian process. Thus the variance of each stress component can be obtained from the 
respective power spectral density. Secondly, it is assumed that the squared process of each stress 
component is also uncorrelated with each other. According to the basic principle of random 
process, the means and variances for squared processes of stress components can be derived. 
Consequently, the mean and variance of Von Mises stress can be further obtained. Thirdly, it is 
supposed that Von Mises stress of structure follow the two-parameters Weibull distribution and 
then a method is developed to determine the Weibull distribution parameters. The numerical 
results show the probability density distribution of Von Mises stress of complex structure 
follows two-parameters Weibull distribution well. The probability density of Von Mises stress 
presented in the work provides the theoretical basis for strength estimation of complex structure 
subjected to multiple-dimensional random excitations. 
Keywords: multiple-dimensional random excitations, random vibration analysis, Von Mises 
stress, probability distributions, Weibull distribution 

 

1. Introduction 
Random vibration is a kind of primary environmental excitation affecting advanced aircraft and 

spacecraft structures for whole flight, such as aerodynamic noise of a rocket fairing and thrust 
pulsation generated by combustion instability of a rocket engine during a practical launch of 
spacecraft. Generally, these random excitations possess the characteristics of high level and wide 
frequency band. The strength is an important index in the design of spacecraft structures and 
influencs the capability and reliability of aircraft and spacecraft structures directly. Wada [1] 
showed that the equivalent peak value of stress method are closer to the actual condition rather than 
the equivalent peak value of acceleration method. In fact, the real environment is mostly multiple-
dimensional random excitations instead of single-dimensional loadings, which can cause structures 
to exhibit complex response characteristics, and stresses will not be uni-axial or bi-axial, but multi-
axial in the most cases. 

Alternatively, it is possible and efficient to calculate an equivalent stress from the multi-axial 
stresses with popular used equivalent stresses, that is, Von Mises stress. Dan Gregor, Fernando 
Bitsie and David O. Smallwood [2] suggested the maximum Von Mises stress and the location were 
different for the combined axis loads versus the single axis loads. Consequently, it is improper to 
substitute for multiple-dimensional random environment with single-dimensional random 
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environment and the equivalent peak value of Von Mises stress method as the significant parameter 
to design and to assure success in multiple-dimensional random environment is required. It is the 
key problem to this method to determine the probability density function (pdf) of Von Mises stress. 

Preumont [3] defined the zero mean Gaussian random process value as the equivalent von Mises 
stress to estimate the high-cycle fatigue life of metallic structures subjected to a random multiaxial 
loading. But the Von Mises stress is a non-zero mean positive value, which have different 
characteristics from Gaussian random process, thus the factor of mean of Von Mises stress cannot 
be taken into account with the zero mean value of the equivalent von Mises stress method. Actually, 
even in linear structures under Gaussian excitations, the Von Mises stress is a non-Gaussian random 
process, a nonlinear function of the linear stress components, whose the probability distribution is 
hard to determine. In the Refs.[4-5], methods for obtaining approximations for outcrossing 
probabilities of non-Gaussian processes have been discussed. Grigoriu [6] obtained approximate 
estimations for the mean outcrossing of non-Gaussian translation processes by studying the 
outcrossing characteristics of a Gaussian process obtained from Nataf’s transformation of the parent 
non-Gaussian process. Segalman [7-9] have derived an expression of the cumulative probability 
distribution of Von Mises stress resulting from random excitations with Gaussian of zero mean. JIN 
YI-shan [10] and SHA Yun-dong [11] presented the probability distribution of Von Mises stress for 
plate structure or thin-walled structure undergoing single-dimensional random loadings process 
accords approximately with two-parameter Weibull distribution. 

In this paper, the probability distribution of Von Mises stress for plate-shell complex structure 
subjected to multiple-dimensional random excitations is studied. Analysis suggests that the 
probability density function of Von Mises stress process of complex structure subjected to multiple-
dimensional random environment accords approximately with two-parameter Weibull distribution, 
the formula for calculating Weibull parameters are given. As a result, the probability density 
function of Von Mises process of complex structure subjected to multiple-dimensional random 
excitations can be determined. It lays the foundation for determining the peak probability density of 
Von Mises process and strength estimation of complex structure undergoing multiple-dimensional 
random excitations.  

2. Probability distribution of Von Mises stress process 

2.1 Von Mises  Stress Process  
In a general three dimensional stress field the Von Mises  stress is given by: 
 2 2 2 2 2 2 23 3 3v x y z x y y z x z xy yz xzS S S S S S S S S S S S S= + + − − − + + +   (1) 

where 𝑆𝑣 is Von Mises stress, 𝑆𝑥, 𝑆𝑦and 𝑆𝑧 are the normal stress components, 𝑆𝑥𝑦, 𝑆𝑦𝑧and 𝑆𝑥𝑧 are 
the shear stress components. These stress components are zero mean Gaussian random processes. It 
is seen that the Von Mises stress is a non-Gaussian random process as the relationships between the 
Von Mises stress and the linear stress components is nonlinear. 

In the reference [10], it is verified that the probability distribution of Von Mises stress obeys 
two-paramaters Weibull distribution for plate structure in single-dimensional random vibration. 
Here, it is supposed that Von Mises stress of complex structure subjected to multiple-dimensional 
random excitations also follows the two-parameters Weibull distribution. 

The probability density function of a Weibull random variable is 

 ( )
1

exp       0v v
v v

s sp s s
γ γγ

α α α

−     = − ≥    
     

，   (2) 

The mean and variance of a Weibull random variable can be expressed as 

 ( ) 11vE s α
γ

 
= Γ + 

 
  (3) 

and 
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 ( )2 2 22 11 1vsσ α
γ γ

    
= Γ + − Γ +    

    
  (4) 

In order to prove the above assumption, firstly, the time histories of six stress components (zero 
mean Gaussian process) of plate-shell complex structure subjected to multiple-dimensional random 
excitations are simulated by Monte Carlo method. Secondly, the time history of Von Mises stress 
can be obtained with Von Mises stress criterion. Thirdly, the mean, the variance and the probability 
density of Von Mises stress are identified by its time history, and the parameter α and γ of Weibull 
distribution are identified by substituting the mean and the variance into Eq.(3) and Eq.(4). Finally, 
the probability density of Von Mises stress and Weibull distribution is obtained as shown in Fig.1. 
It is found that the statistical result of the time histories of Von Mises stress coincides with Weibull 
distribution curve well, thus it is reasonable to suppose Von Mises stress of plate-shell complex 
structure subjected to multiple-dimensional random excitations to follow the two-parameters 
Weibull distribution. The probability distribution of Von Mises stress can be obtained as long as the 
parameter α and γ of Weibull distribution are identified by this method. 

 
Figure 1: the probability density of Von Mises stress curve. 

2.2 Squared Processes of Stress Components 
It is shown that the right hand side of Eq.(1) contains the squared processes of six stress 

components. According to the expression of Eq.(1), the mean and the variance of the squared 
processes of Von Mises stress can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 23 3 3v x y z x y y z x z xy yz xzE S E S E S E S E S S E S S E S S E S E S E S= + + − − − + + +   (5) 

 ( ) ( )2 2 2 2 2 2 2 2 2+ + 3 3 +3v x y z x y y z x z xy yz xzS S S S S S S S S S S S Sσ σ= − − − + +   (6) 
It is well known that for a linear system, each stress component is uncorrelated with each other 

and can be regarded to be the zero mean Gaussian random process. Thus the variance of each stress 
component can be obtained from the respective power spectral density. Similarly, it is assumed that 
the squared process of each stress component is also uncorrelated with each other. Therefore, the 
covariance of each stress component is zero. Based on the properties of generalized covariance, the 
mean and the variance of random variable 𝑋and 𝑌 is given by: 

 ( ) ( ) ( )E XY E X E X=   (7) 

 ( )2 2
i i

i i
X Xσ σ  = 

 
∑ ∑   (8) 

according to Eq.(7) and (8), Eq.(5) can be expressed as: 
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Consequently, if the means and variances for squared processes of stress components are given, 
the mean and variance of Von Mises stress can be further obtained.  

For the zero mean Gaussian random process X ~ ( )0,N σ , we have 

( ) ( )
0                is odd
1 !!       is even

k
k

k
E X

k kσ


=  −   
 

where ( ) ( ) ( )1 !! 1 3 3 1k k k− = − × − × × × , and 

 ( )2 2E X σ=   (11) 

 ( )4 43E X σ=   (12) 
when 2,4k = ,the variance is given by 

 ( ) ( ) ( ) 22 2 4 2 42X E X E Xσ σ = − =    (13) 

2.3 Parameter Identification of Weibull Distribution 
The origin moment of  random variable X is given by 

 ( ) ( )k kE X x f x dx
∞

−∞
= ∫   (14) 

where ( )f x  is the probability distribution of X . 
It can be obtained 

 ( )2 2 21vE s α
γ

 
= Γ + 

 
  (15) 

 ( )4 4 41vE s α
γ

 
= Γ + 

 
  (16) 

where Γ  is the gamma function. 
The variance of  2

vs  can be obtained 

 ( )2 2 4 24 21 1vsσ α
γ γ

    
= Γ + − Γ +    

    
  (17) 

In a summary, the mean and the variance of squared processes of stress components are firstly 
obtained by Eq.(11) and Eq.(13). Secondly, the mean and the variance of squared processes of Von 
Mises stress are obtained by Eq.(9) and Eq.(10). Thirdly, the parameter α  and γ  of Weibull 
distribution are identified by substituting the mean and the variance of squared processes of Von 
Mises stress into Eq.(15) and Eq.(17). Finally, the probability distribution of Von Mises stress can 
be determined. 

3. Numercial Example 
To check the validity of analytic methods, consider the example of a plate-shell steel complex 

structure shown in Fig.2. The structure is clamped around the base and subjected to an acceleration 
base excitation defined by Power Spectral Density (PSD) shown in Fig.3. The multiple-dimensional 
random excitations, that is, X, Y and Z axis inputs at the same input levels are applied. The three 
support accelerations are uncorrelated. The first thirty-two modes of structure are within the 
bandwidth of the excitation. The total of 63 shell elements have been used in the finite element 
discretization, and combine 14 spring element with enough stiffness is used to simulate clamped 
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boundary condition. The thickness of the structure is 7mm. In this case, the resulting von Mises 
probability distribution is evaluated at one point (i.e. node 1234). 

 
Figure 2: The front view and top view of the geometry. 

 
Figure 3: Acceleration PSD imposed at the base of the structure. 

 
Figure 4: Finite element model of the structure. 
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                    Figure 5: The PSD of xS .                        Figure 6: The PSD of yS . 

 
                    Figure 7: The PSD of zS .                          Figure 8: The PSD of xyS . 

 
                    Figure 9: The PSD of yzS .                          Figure 10: The PSD of xzS . 

 
Figure 11: the probability density of Von Mises stress. 

Fig.5-Fig10 shows the PSD of the six stress components obtained from ANSYS in one selected 
element. Fig.11 gives the result of the probability distribution of Von Mises stress. It is seen that the 
probability distribution of Von Mises stress coincides with two-parameters Weibull distribution 
curve well. The numerical simulation of the mean of squared processes of Von Mises stress is 
15.88MPa, the numerical simulation of the variance of squared processes of Von Mises stress is 
35.32MPa2. The mean of supposed two-parameters Weibull distribution is 15.85 MPa. The variance 
of supposed two-parameters Weibull distribution is 36.84MPa2. The numerical simulation results 
are in good agreement with the supposed two-parameters Weibull distribution results. 
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4. Conclusions 
It is found that the probability density distribution of Von Mises stress of complex structure 

subjected to multiple-dimensional random excitations coincides with two-parameters Weibull 
distribution curve well. It means that the two-parameters Weibull distribution can be used to 
describe the probability density distribution of Von Mises stress of structure in the case of multiple-
dimensional random excitations. Using this method, the parameter of Weibull distribution can be 
defined easily by the PSD of six stress components to obtain the probability density distribution of 
Von Mises stress. According to the results, the peak probability density of Von Mises process and 
strength estimation of complex structure undergoing multiple-dimensional random excitations can 
be determined further. 
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