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The present study is concerned with the nonlinear vibration characteristics of laminated composite plates. 
Considering the geometric nonlinearity of plates, the vonKarman large amplitude theory is used, and the 
finite element method (FEM) is proposed for the present nonlinear model, using Hamilton’s principle, the 
equation of motion of the composite laminated plates is established. Comparisons of the present results with 
those published in open literatures show the accuracy and correctness of the present methodology. Moreover, 
the nonlinear vibration of composite laminated plates under the harmonic excitation force is discussed in 
time domain. 
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1. Introduction 

The vibration of plates results from the internal interaction of elastic force and inertial force. 
Because the composite laminated plates have high stiffness, strength and low weight, they are often 
used in commercial and military aircraft, and the vibration of the composite laminated plates is 
concerned by many researchers. 

Numerous investigators have studied the linear vibration of laminated composite plates [1-3]. 
But recently, the environment situation of the plates is always in supersonic speed and extreme high 
heat, so the influences of nonlinearity must be considered in the research. Houmat [4] presented 
solutions to the geometrically nonlinear flexural free vibration of a rectangular composite plate 
composed of variably spaced rectilinear and parallel fibers. Oh et al. [5] analyzed the nonlinear 
transient response of stiffened composite plates with thermal loads. Amabili and Farhadi [6] studied 
the nonlinear forced vibrations of isotropic and laminated composite rectangular plates and 
compared with the classical and shear deformable theories. Saha et al. [7] researched the large 
amplitude free vibration of a thin square plate with different non-classical boundary conditions. 

In the present study, the nonlinear vibration characteristics of laminated composite plates with 
the geometric large deformation are investigates,  the harmonic excitation force is applied at the 
central of the plates, and the boundary conditions of the plates are clamped at all edges. The effects 
of the nonlinearity are discussed in time domain. 

2. Equation of motion of the composite laminated plates 

The composite laminated plate is shown in Fig.1. Three variables u, v and w are used to denote 
the displacements of the plate in the x, y and z directions. The coordinate origin is chosen such that 
the lower left corner is on the middle surface. 

The displacement fields of the plates are given as 
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where z is the transverse coordinate of the panel, and 0u , 0v  and 0w  are the mid-plane displacements. 

According to the von-Karman large deformation theory, the strain–displacement relations can be 
expressed as 
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The constitutive equation of the kth lamina is 
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The constitutive equation of the kth lamina is transformed into the global coordinate system 
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Because the triangular plate element can adapt multiple boundary shapes, this element is used to 
discrete the mid-plane and the displacements of the node can be divided into the bending 
displacements (w, x , y )and the axial displacements (u, v). So the displacements of the element’ 

node can be expressed as follows 
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i=1-2-3, j=2-3-1, m=3-1-2, 
in which 1 2 3, ,L L L are area coordinates of the triangular plate element. 

Hamilton’s principle is used to formulate the governing equation of motion, and its expression is 
given as [8]: 

 
2 2

1 1

0
t t

t t
T U dt Wdt                                                       (5) 



ICSV24, London, 23-27 July 2017 

 

ICSV24, London, 23-27 July 2017  3 

According to Eqs. (1)-(5), the equation of motion of the element is obtained, and assembling the 
element matrices into the global ones, the equation of motion of the whole composite laminated 
plates can be obtained as 
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is the nodal displacement vector, [M] is the mass matrix, [C] is the structural damping,  1K and 

 2K are the linear and nonlinear stiffness matrices,  F is the excitation force vector. 

In order to calculate the static response of the plate, the tangent stiffness matrix is given as 
follows 
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3. Numerical simulations and discussions 

3.1 Validations of the formulations and codes 

The numerical simulations are performed by the MATLAB software. In order to verify the 
correctness of the governing equation of motion and the MATLAB programs, the static responses 
of the anisotropy plates are compared with those of Reddy [9] as shown in Table 1. The material 
properties of the composite panel used in the calculation are E1 = 3×106Pa, E2 = 1.28×106Pa, G12 = 
0.37×106Pa，ρ = 1600kg/m3, μ12 = 0.32, a=b=12(in), and h=0.138(in). The boundary conditions 
considered here are 

    (a) Simply supported case 

0 0 0 0u v w   at x = 0, a and y = 0, b. 

    (b) All edges clamped 

0 0 0 0x yu v w       . 

Table 1 The static response of all edges clamped anisotropy plates under uniform load. 

 J.N.Reddy [9] present 

0q /psi 0w /in 0w /in 

0.5 0.0294 0.0326 
1.0 0.0552 0.0592 
4.0 0.1456 0.1424 
8.0 0.2054 0.1958 
12.0 0.2450 0.2313 
16.0 0.2754 0.2587 
20.0 0.3006 0.2816 

 

Table 2 Comparison of nonlinear frequency ratios (NL/L) of simply supported anisotropy plates 

w/h 0.2 0.4 0.6 0.8 1.0 

Perturbation 
method[10] 

1.0196 1.0761 1.1642 1.2774 1.4097 

Finite element[11] 1.0134 1.0518 1.1154 1.1946 1.2967 
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FE time history[12] 1.0190 1.0739 1.1597 1.2699 1.3987 

present 1.0137 1.054 1.1182 1.2034 1.3063 

 
Further, the variation of nonlinear frequency ratio (NL/L, where subscripts NL and L represent 

the nonlinear and linear cases) with respect to the maximum amplitude ( max /w h , where maxw is the 

maximum amplitude of the plate) is evaluated for simply supported square plates, and it is 
compared with those in the open literatures are shown as in Tables 2. The material properties of the 
composite panel used in the calculation are: E1 = 4×106, E2 = 1×106, G12 = 0.5×105，ρ = 1, μ12 = 
0.32, a=b=1000×h, and h=1×10-3, 

It is observed from Tables 1 and Tables 2 that the present results are in good agreement with 
those in the open literatures, which verifies that the governing equation obtained in this paper and 
the MATLAB programs are correct. 

3.2 Nonlinear vibration analysis 

The material properties used in this section are: E1 = 40×109Pa, E2 = 1×109Pa, G12 = 0.5×109Pa，
ρ = 1000kg/m3, μ12 = 0.25, a=b=0.3(m), and single lamina is h=1.5×10-3(m). The ply angle of the 

two layer is [90 / 0 ]  . The boundary conditions for the simply supported plate with immovable 

edges are as follows: 

0 0 0 0xu v w      at x=0, a  and  0 0 0 0yu v w      at y=0, b. 

The first natural frequency for linear vibration of the plate is calculated as L = 100.4 Hz. A 
harmonic force is applied at the center of the plate. It is assumed that the damping matrix is eye(n) 
×0.00525 (n is the number of the degrees of freedom ), the frequency ratio of the force is NL/L, 
and the maximum force is f. The transverse displacement w of the center point is researched.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Frequency-response behavior curve for f=10N      Fig. 2 Frequency-response behavior curve for f=20N 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3 Vibration time history of the plate                           Fig. 4 Vibration time history of the plate 
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for NL/L = 1 and f = 10N.                                                  for NL/L = 1 and f = 10N. 
 
Initially, the maximum force 10f N is considered, the frequency response curve of the plate 

under harmonic force is shown in Fig. 1. It can be seen from the figure that because of the nonlinear 
factor the hard spring behavior is observed. For 20f N , the similar phenomenon can be obtained 

as shown in Fig. 2. 
Next, when the force is 10f N , and the frequency ratio is NL/L = 1, the vibration time 

history of plate is presented in Fig. 3. From Fig. 2, it can be seen that when the frequency ratio 
isNL/L = 1.4, the maximum amplitude maxw  reaches the largest value, and for this case the 

vibration time history of the plate is shown in Fig. 4. 

4. Conclusion 

In this paper, the nonlinear vibration characteristic of laminated composite plates is investigated, 
and the geometric large deformation is considered. The classical von-Karman large deformation 
theory and the finite element method are used. From the numerical results, the following 
conclusions can be drawn: 
(1) The nonlinearity should be considered to analyze the vibration of the plate with large 

deformation, consequently, the rigidity of the plate is increased, and the frequency response 
curve may shift toward right, which reflects hard spring behavior of the system. 

(2) With the excitation force increasing, the shifting angle of the frequency response curve is also 
increased, and the increasing trend of the maximum amplitude is reduced. 

(3) For the different excitation forces, the maximum amplitudes are all on the backbone curve. 
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