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1. INTRODUCTION

Passive sensing using a towed array of hydrophones has long been an important tool in the
detection of submarines. The signals received by the hydrophones are delayed relative to one
another due to the different transmission times from source to receivers. All methods of detecting
and locating sources from these signal records rely on appropriate delays being applied to these
simultaneous records to compensate for those due to the expected bearing of the source. The
simplest of these, Conventional Beamforming (CBF). just adds these suitably delayed signals
together and squares the result to give apositive value corresponding to the power perceived from
a direction. More complicated non-linear methods exist which examine the structure of the cross-
correlation matrix; these are not dealt with here.
All methods are sensitive to noise in the data or errors in the model assumed. Additive noise can
be due to other submarines or ships (including that towing the array), sea creatures, wind, wave—
brealdng and all forms of precipitation, as well as noise generated by dragging the array through
the water. Model errors may be failure to allow for correlated sources, near-field sources,
fluctuations in the transmission medium, multipath propagation and poorly determined sensor
locations. This work concentrates on the effect of the last of these on Conventional
Bearnforming, although some account is taken of the other sources of error.

2. DEGRADATION OF ARRAY PERFORMANCE

Typical output of a simulation of CBF processing is shown in Fig la, where a single source at
broadside was considered and no noise effects were present. The beam pattern displayed. with
the ordinate sealed in decibels, has a multi-lobed structure with the main peak corresponding to
the bearing of the source, but other (lower) peaks being an artefact of the process rather than
indicating extra sources. [ If there had been ambient noise in the simulation. it would have added
a continuum to the beam pattern obliterating any information on lobes weaker than its level. ]
If the array had a slight bow in its shape of amplitude 0.37. (where 7. is the wavelength of the
sound waves processed), but processing was done for a suaight array then the beam pattern
would be degraded as in Fig 1b. [ The 'bow' used here is half a sinusoidal wave; Hodgkissl
obtained similar results using a circular arc. ] A much more severe defamation of amplitude 7.
results in the beam pattern shown in Fig lc, where the mainlobe (that in the direction of the
source) has diminished to a level below that of the subsidiary sidelobes. If significant noise was
also present, only the top 2 peaks might be discernible so that two sources would be perceived to
exist at ~15' to broadside rather than the solitary one at 0' which is correct. If the beamforming
operation is performed using the true sensor locations i.e. same as in the simulations, then a
pattern similar to Fig la would be achieved. Thus it can be seen to be very important to determine
the appropriate sensor positions to be used.
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Fig 1' : a) Typical output of CBF processing using an array of 16 elements at

N2 separation and a source at 0'. [ Angular span is -90‘ to 90'; y-axis has a
range of 30dB. ] b) Beam pattern produced when array has a bow in it of

amplitude 0.37., but is processed as though straight. c) Same as for b) but

with bow of size A.

3. USE OF POWER FUNCTIONS TO MONITOR FOCUSING OF ARRAY

3.1 Definition of Power Function, <1)

Following the work of Muller & Buffington2 and Bucker3. it was decided to pursue an approach
based on evaluating some measure of the 'sharpness' or focusing achieved by the processing. A

suitable function, here denoted by (D, is the square of the power perceived from an angle,

weighted by a cose term and integrated (usually -90° to 90' relative to broadside, but it can be
for a full 360') viz:-

N
d’ = IP2(9) c059 d6 = Epzi cosei (1)

i
where pi = p(6i). Other power functions, involving terms such as p3i have been tested“, but this
is the simplest and is found to perform well. It can be related to the variation of power levels in
the beam pattern about a mean uninformative level:-

d> = 2 [pi - li']2 cosei + 2 P2 cosei (2)

where P = { 2 pi cosei } / { E cosei ] is the (weighted) mean of pi. [ Value P is related to the
total power in the pattern and is approximately independent of the processing shape used. ]
If a signal record is simulated for a bow of a certain amplitude and CBF applied to different
estimates of the sensor positions corresponding to different amplitude deformations of the array.
then the beam pattern will evolve through the patterns shown in Figs _lc.lb,la and back through

Figs 1b.lc again; the power function, (D, will change smoothly, showing a maximum for zero
error in the sensor positions [Fig 2a]. Thus for small errors in the size of the how, an

examination of the local gradient of d> with respect to bow size willinfer the necessary direction
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of change of the size. If large errors in this size are considered. the variation of d) is as in Fig 2b.
This shows that the variation does not have a single peak; thus convergence to true via a gradient

routine can only be assured for for an error, Aal, in the range -31 < Aal < 31.

b)
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Fig 2 : a) Variation of power function. CD with error in estimate of a1.

[ Example is for 71,:6m and a 16 element array of length 45m. ] b) Same as
for a) but on a larger scale to illustrate minirna and secondary maxima.

3.2 Generalized Deformation of Array Shape
A bow-like deformation of the array may be the most likely intuitively — either due to towing
ship undergoing cornering manoeuvre or presence of a strong current across the array — but
array shapes of a different nature may also be envisaged e.g. due to transverse waves propagating
along the array. As an example of such snaking of the array. the array shape was also modeled as
a full sinusoidal wave [Fig 3a]. The degradation of the beam pattern resulting from errors of this

nature of amplitude 0.27» and 0.5}. are shown in Figs 3b.c respectively. It is found that (I) as
defined previously, still shows a smooth variation with a maximum for zero error. In this case,
the minima in the power function plot are nearer, so that convergence via aslope following

approach is only guaranteed if the error in this second term, Aaz is in the range -7t < Aaz < 1.
Further work has shown that use of higher order sinusoids still causes the power function to vary
in a smooth manner with a maximum for zero error.
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Fig 3 : a) Full sinusoidal deformation of array. b) Beam pattern for errors in
array shape as in a) of amplitude 0.27». c) Same as b) but for 0.57..

3.3 Effect of Noise on the Performance of (D

Random additive noise affects this simplistic idea of a well defined maximum of d) lying at the
location corresponding to zero location error. Moderate levels of noise are found to cause
significant secondary maxima in (b to occur and also to shift the position of the main peak. Fig 4
shows a few simulations with aninput noise level of equal strength to the source. Now use of a
routine to locate the value with maximum (D will converge to one of those peaks leading to an
error in the estimation of al. The beam pattern formed using such a selected array shape will no
longer show a mainlobe exactly in the direction of the source. although at this level the error is
mainly due to the presence of the noise itself rather than the indeterminacy in the array sensor
locations.

'3
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Fig 4 : Four plots of variation of CD with al for a 16 element array with an
input SNR of MB showing the displacement of the peak and the greater
proximity of secondary maxima.
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It is instructive to examine the error in the estimate of a, due to the noise i.e. the typical

displacement of the peak of db. Many repeated simulations with noise uncorrelated between

sensors shows the displacements of the maximum of (D to posses a normal distribution about zero

error. Representing the error in estimating the coefficient of a1 by 0(a1) (the standard deviation of
the spread of estimates), simulations show that:-

am)” g 0 37 sec9

N] n - Ps/Pn
where 6 is the bearing of the source, it is the no. of elements and ps/pn is the signal to noise ratio
on input. A similar expression holdsfor errors in estimation of a2, but with the coefficient
changed to 0.25 due to the different shape of the deformation. A theoretical justification of this
relationship is given in reference 4.
Good agreement was found between equation 3 and simulation work for a wide range of
conditions — input SNR from 45dB to OdB, no. of elements in the range 8 to 32 and source
bearings from 0' to 50'. The shape estimator was found to perform poorer than expected for very
low and very highnoise levels [see Fig 5]; under the former regime errors were larger due to
numerical problems associated with beamforming at discrete angles and the limited holding
accuracy of the computer, whilst under the latter the signal was too weak for the algorithm to
cope. Further difficulties were encountered when the source hearing was more than 60' from

broadside. Most of the work was done using an array with elements at N2 spacing, but equation
3 holds true for a range of element separations, although if separation is too large effects due to
aliasing can cause problems. Only a little work was done for arrays of more than 32 elements;
indications are that performance continues as predicted.

(3)
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Fig 5 : Plot of estimation accuracy of a1 against input Signal to Noise Ration.
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4. CONVERGENCE PROPERTIES OF SHAPE ESTIMATOR

4.1 Ideal Conditions
The shape of the array under realistic conditions may be expressed as the sum of such sinusoidal
components. In general 11 components would be required for an array of n eiements, but the
physical constraints of a towed array under tension imply that the coefficients for the higher order
values may be set to zero without appreciable loss in performance. Expansion of the shape as a
Fourier Series thus reduces the number of parameters to be estimated from n to k (the no. of

Fourier terms required). The value of k will depend upon the array length expressed in 7L and the
towing conditions, but it is probably of the order of 4 to 8 for most purposes; the paragraphs
below use a value of 2 as this is easiest for visualization purposes.
Even with only4 parameters, a grid type search over all unknowns at high resolution would be

computationally very intensive. However, the smooth nature of the ¢-surface as portrayed in
Figs 2a,6a lends itself to utilization of a simple gradient climbing routine. In the case illustrated
in Fig 6a, convergence can be seen to be straight forward for any starting estimate for which a1

and 32 are within 7L of true.

I)

  
Fig 6 : a) Variation of (b with a] and a; with no noise present. [ Example is

for a], a2 in the range -8m to 8m with 7t=6m. I b) Same for a particular
realization with significant noise (BdB less than signal strength)

4.2 Convergence in the Presence of Noise
Addition of significant noise into the simulation notonly affects the location of the peak point
(corresponding to a shape error when the image is ‘sharpest’) but also causes the formation of
subsidiary maxima much nearer than in the no noise case [cf Figs 2a, 4]. An example is shown in
Fig 6!); gradient climbing routines may easily converge to such subsidiaries resulting in a poorly
focused image being selected. As this is merely a product of processing random noise on top of a
signal, these extra points are not constant in location, but may occur anywhere on the lower
contours of the main peak. The higher the noise level, the nearer these spurious peaks may occur
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to true and thus the smaller the convergence region. Application of Hamming weights at the
beamforming stage proves beneficial as it reduces the prominence of spurious peaks in the are;
plane; however use of such shading does also increase the error in the location of the main

5. SUMMARY

This paper has examined the problems endemic in sonar processing due to uncertainties in sensor
positions. The resultant degradation to output of Conventional Beamfomting has been illustrated
and a tool introduced which helps deduce sensor positions (and thus source bearings) in a
computationally simple manner. This work expands on that of others” in that it derives the
limits on such a task, showing how they depend on the signal record (strength of signal relative to
background noise and source hearing) and on array characteristics (no. of elements, their
separation and the wavelength of sound processed).
Another facet of the shape determining problem was also explored, that of the region in parameter
space for which convergence to true is fairly straightforward. The false 'focusing points'
introduced by noise were demonstrated, although it was emphasised that none of these are
constant in location. merely being an artefact of processing a particular realization of the noise
field. The effect of applying weights to the elements at the beamforming stage was also
discussed.
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