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I. INTRODUCTION

Early neural network speech recognition systems were notable for their failure to perform as well as
classical recognisers based on techniques such as Dynamic Tune Warping (UN!) and the Hidden
Markov Models (HMM). The failure may be due to tire difficulty of explicitly dealing with the time }
variability of speech when using neural networks. and various architectures such as the Time Delay
Elmira! Ngork (TDNN) and recunent Multi Layer Perceptron (MLP) have been proposed to solve

Another method of using a neural network in a way which takes explicit account of time variability
has been posed b Levin andiscalled the Hidden Control Neural Network (HCNN) [I]. Like
the HCNNatmmpts to model an utterance by a Markov state sequence. However. instead
of associating a specific observed vectoremiso'on probability distribution with each state. the HCNN
assumes that the vectors generated durin a particular state are characterised by a specific prediction
function which enables the next observeti vector to be predicted from previous vectors.

The HCNN classifier consists of a number of word models. Fach word model contains an MLP
which has been trained to predict the next frame in the observed frame sequence. for words of a
particular class. from a few of the previous frames. Recognition is performed by applying the
ohservationsequenceofanunkrtownutteraneetoeverywordmodelandtheutteranceisassigned the
class of the word model whose ML? produces the least prediction error energy aggregated over the
snare utterance.

The experimental work described in this paper was designed to evaluate the HCNN for the
recognition of isolated words and to compare the results with those obtainable using continuous
densrty HM'Ms on the same data. it will be shown that the performance of HCNNs is significantly
worse titan W3 and an investigation into the reasons is described. In particular. it will be shown
that frame to frame prediction functions are not a good characterisation of particular speech states
and that in reality. the HCNN probably does not leam such prediction functions.

As a result of the disappointing perfonnanoe of HCNNs. a new technique called the Hidden Control
Density Mapper (HCDM) is pro . The HCDM has a similar architecture to the HCNN but
does not attempt to characterise speech by predictive functions. Instead. the ML? in each word
model is trained to produce as high an output as possible on utterances belonging to its class and as
low output as possible on utterances of other classes. Thus the recogniser is trained in a class
discriminative fashion. unlike the HMM and HCNN. Recognition is performed by applying the
unknown uttetanee's frame sequence to all models and aggregating each word model MLP's output
over the entire utterance. The utterance is assigned the class of the word model producing the
highest score.  ProclOA Vol 14 Put a (ton) as
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The HCDM will be shown to perform almost as well asan HMM but withwt the need for the
estimation of state transition probabilities, and in spite of its currently inferior rformance it is
thought that further development may yield a system which works as well as the

2. PRINCIPLE OF THE HCNN.

2.] Architecture ofthe HCNN.
The architecture of a single HCNN word model is shown in figure 1. As already described. the word
model consists of an MLP which attempts to predict the next frame.Cu. in an utterance from
previous frames. In practice. an exuernely complex MLP would be required in each word model if it
were required to synthesise the complete range of state specific prediction functions in a particular
class of utterance. A more robust approach is to select a separate MLP to synthesise the prediction
function associated with each state. Alternatively. a single MLP can be used in conjunction with an
extra input to which is applied a state control code. Sn. The effect of the state control input is to
“steer” the MLP to produce the required state specific prediction function. It is the last method
\thigrlufias proposed by Levin and from which the technique derives its name of Hidden Control
eu etwork.
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Figure 1: Architecture of Single HCNN Word Model (during recognition).

  
  
Typically. "one-out-of-N" codes are used to represent each state and these are applied to the input
of the ML? in concatenation with the chosen number of past frames. For example, if it is assumed
that the utterance can be modelled by 8 states. then the control code consists of an 8 element vector.
with just 1 non-mro element. Typically. the prediction is based upon one previous cumposite Me]
Frequency Cepstral Coefficient (MFCC) vector of 17 dimensions, and so the total number of inputs
to the ML? will be 25.

The optimal sequence of control codes is found using the Viterbi algorithm [2] such that the
aggregated prediction error energy is minimised. The sequence of control codes effectively defines
the sequence of underlying states in the speech during which the required speech frame predictor
has a state specific transfer function. In common'with HMMs. the sequence of control codes is
assumed to be governed by a Markov process [3].

2.2 Training the HCNN.
The MLP predictor for each class is trained separately by altemating between two distinct phases -
which are referred to as re-errr‘marian and segmentation. It is of note that the HCNN does not

34 Proc.l.o.A. Vol 14 Part a (ma)
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perform discriminative learning like most other neural net classifiers because each MLP predictor is
trained separately. This is probably a significant deftdency in the existing HCNN concept.

Training is started by choosing an initial segmentation of the utterance. Typically. the utterance is
uniformly segmented so that equal numbers of speech frames are associated with each of the control
codes. MLP weight re-estimauon is then performed using Backward Error Pro agation (BEP) [4]
using a randomly picked observation vector. 0... from a chosen utterance exarnp e. The appropriate
control code SII can be referenced for the chosen observation and it is appended to 0...; and 0...; to
produce the overall MLP input vectorE. The tar et T; will correspond to o... A series of such
examples a: randomly selected and used to train MLP whose weights are updated with each
new examp

Following many weight re-estimations. the segmentation training phase is entered. In this phase. the
MIJ’ is used to predict the next frame in each of the utterance frame sequences and the sequence of
control codes is o timized using the Virerbi algorithm to the mean prediction error over all
utterance examp es of the particular class. During segmentation. the MLP weights are fixed at
whatever values they had after the previous re-estimation phase.

2.3 Classification Using The HCNN.
Once the optimal MLP weights sets have been found for each class of word. the system can be used
for recogmtion of unlabelled words. The unknown observation sequence is a plied to each HCNN
word model and the Viterbi algorithm used to find the optimal sequence 0 control codes which
minimises the prediction error energy for each model. The utterance is assigned the class of the
model producin the least error ener . Note that none of the code sequences derived during
training are during recognition. e segmentation process is perforrued afresh for each class
predictor and is unique for each unlabelled unaance to be classified.

3. WHOLE WORD RECOGNITION USING HCNNs ANDW

All experiments resented in this paper were done using the BT speaker independent ‘Sl' corpus
which consists o a training set of 3 examples by 52 speakers of each of the letters of the alphabet
The test set consists of 3 examples of each of the letters spoken by a different set of 52 speakers.
The utterances were encoded as 17 dimensional vectors containing a differential log frame energy.
MFCC coefficients C1 to Ca and their time differentials AC1 to AC3. These delta-MFCC frames (or
observations) were produced every Him.

The HCNN's MLP predictors were provided with an input consisting of a sequence of pairs of
delta-MFCC frames concatenated with a “one-out—of-four” control code. Each MLP used 38 input
units. 5 sigmoidal hidden units and had 17 linear output units. A separate model was trained for each
of the 26 word classes. The HMM recognise: consisted of 4 state. no skip. models using a Mixture
of 7 Ganglans to model the emission probabilities in each state (this was the same number of states
used in the HCNN tests). The HM'M was trained using Viterbi alignment and clustering. followed
by Pant; lWelch re—estimation operating on 17 dimensional delta MFCC vectors as described in
section . .

The HCNN predictor achieved a performance of 34.7 1 1.5% on the 81 test set and 38.2 :l: 1.5% on
its training set suggesting a reasonable level of generalisation was being achieved. The l-lMM
provided an accuracy of 94.0 i: 0.8% and 84.5 :t: 1.1% an the training and test sets respectively.
Confidence limits are set at twice the estimated standard deviation [5].
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4. CHARACTERISING SPEECH BY mTER FRAME RELATIONSHIPS

4.1 Frame to frame prediction function as a speech characteristic.

The essential idea underlying the HCN'N recogniser is titat each speech state within an utterance

should be characterised by a particular frame to frame predictionvfunction. However. the rather poor

perfonnancc of the HCNN corn ated to an HMM suggests that frame to frame prediction functions

are not in reality good charactensers of different speech states. Instead. the MLP may act as a “look

up table". producing an output value which is detennined primarily by the state control code at its

input and which is unrelated to its previous frame inputs. The optimal output in the latter case would

be a vector having the mean value ofthe observed vectors for that State and the system would exhibit

similar behaviour to an HMM which had a single entry codebook for its state dependent emission

probabilities.

An experiment was devised to test this hypothesis. it involved a simplified form of l-lCN'N in which

the MLP in each word model was replaced by a set of linear predictors. Each predictor is selected in

turn by the sequence of state control codes. Thus. the non-linear mapping of the ML? is replaced by

a set of linear mappings. The system is called the Hidden Control Linear Predictor (HCLP) and it is

irn ssible for this system to produce an output just in response to the state control code. If the

H LP enabled good recognition. it would indicate that prediction functions really are characteristic

of particular speech states. It might be argued that speech states could be characterised by non—

linearprediction but not by linear prediction functions. However. previous work on the prediction of

line' spectral pair descriptions of speech has shown that non-linear prediction has negligible

advaurgage over linear prediction and it is concluded that MFCC observations are in general linearly

rela

4.2 Architecture and operation of the Hidden Control Linear Predictor.

The architecture of HCLP is shown in figure 2which illustrates the set of linear predictors which are

selected by the sequence of state control codes. The state control sequence is identical to the

sequence which would have been an input to the ML? in an HCNN.

The HCLP is uained in a very similar manner to the HCNN. Each training utterance is initially

divided into equal length state segments which define the initial state control sequence. The

coefficients of each linear predictor are then adapted using gradient descent minimisation of its

prediction error during the period when it is selected by the state control sequence. The coefficients

are adapted at the frame rate of the speech. The error power given by a linear predictor is a quadratic

function of its coefficients and so convergence to a global minimum is assured.

After each of the training examples have been used several times. the Viterbi a1 orithm is used to re-

estimate the optimal state segmentation of each utterance. and back propagation of the predicrion

error is re—commenccd to_ adapt the predictor coefficients. The 2 training phases of state

segmentation and coefficient adaptation are alternately repeated many times.

4.3 Recognition using the HCLP. \
The HCLP was trained and tested on the SI 'corpus using the standard from end processing scheme

described in 3.1. 26 HCLP models were trained corresponding to each of the classes. Fach HCLP

used 4 control states,’a second order linear predictor being associated with each. The system

achieved 14.3 :1: 1.1% accuracy on the test set and 14.7 i 1.1% on its training set. Tests were also

conducted using founh order linear predictors but these offered only 9.4 d: 0.9% accuracy on the

test. set.

Although the performance achieved by the HCLP is considerably poorer than any other technique

tested on this database. it is still performing approximately 4 times better titan a totally random
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Proceedings of the Institute of Acoustics

COMPARISON BETWEEN HCNNs AND HMMs

classifier. None the less, the results do suggest that frame to frame prediction is a very poor way of
characterising a. -.-. h states.   

Viterbi State
control symbol

; erterator

Figure 2: The Hidden Control Linear Predictor (HCLP).

4.4 The effect of the MFCC representation on predictive characterisation.
The previous experiments have shown that the prediction functions relating successive frame values
are poor characterisers of specific speech states. However. it is possible that this is due to the
particular speech representation which has been used. the MFCC.

MFCCs represent the log energy in a section of speech by the value ofjust one coefficient. Co. The
remaining coefficients. C, to 3. encode the log power spectral shape by resolving it onto a set of
cosine basis functions. If we consider low energy sounds such as fricatives or background noise,
the value ofCo will be low but the values of the other MFCC coefficients will be just as large as
when the speech is a high energy event such as a vowel sound. This is because scaling down
spectral power corresponds to a vertical offset in the log spectral envelope: the envelope shape and
hence the Discrete Cosine Transform (DCT) coefficients that describe it remain unaffected. This
means that the estimate of spectral shape encoded by coefficients CI to C3 will be highly variable
during low energy pans of an utterance such as fricatives or stops. This will have a profound effect
on the operation of an HCNN because state-specific prediction of successive frames will be
impossible in these circumstances.

The previous argument suggests that the HCNN may work better with a simple spectral
representation. such as unprocessed filter bank coefficients. Alternatively. it may be possible to use
MFCCs but to weight the HCNN prediction error by the cunent frame energy. This would allow
the compactness of the MFCC representation to be exploited whilst reducing the significance of
noise-like sounds in the prediction error.

5. THE HIDDEN CONTROL DENSITY MAPPER

5.1 Principle of the Class Discriminative Hidden Control Density Mapper.
The Hidden Control Density Mapper (HCDM) is an attempt to allow a state based neural-network
classifier to model the distributions associated with training observations. rather titan their temporal
correlation. as in the HCNN. In this respect it is similar to the HMM. However. rather than being
u-ained to directly model the probability density function of the observations associated with each
state, the HCDM is trained to maximise the average discrimination between the output of the conect
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classifier and those of all incorrect classifiers. In other words. the system undergoes Class
Discrimative learning (CDL). Frgure 3 shows the HCDM architecture.

It a specific HCDM classifier operates on a training observation sequence associated witlt class k.

or = {er 2n 2n - 2n} (1)

it will produce a response which is the sum of the density mapping values associated with each of
the observation vectors. If the HCDM corresponding to the j'h class is used we can denote its
density mapping function F» and its response to a pattern associated with class l: as r-k (equation 2).

Ohszrvatiun Vector sequena lor example q of class It.

Control Symbol Sequence matched to on

Figure 3: The Hidden Control Density Mapper (HCDM).

Y

r}. = 2 riots.) (2)
III

Here r14 denotes the response of the j"I HCDM to the q'h example within the training set labelled as '
class T.Z is the number of vectors constituting the qlh example and Fj denotes the density
mapping performed (by an MLP) within the HCDM associated with class j. Finally 5,; is the
control symbol encoding the correct state for the t“I frame of the Okwhich would be produced by
the Viterhi algorithm. It Nk denotes the number of training set examples labelled as class k. we can
generate a mean response by considering all of the examples of class k within the mining set.

I N. ,0

R» =—— J’- (3)

5.2 Class Discriminative Learning.
The aim of the CDL algorithm is to maximise the discrimination between the correct HCDM
response and all the incorrect HCDM responses. The discrimination for O“ can be defined as the
ratio of the response of the correct HCDM to the torn] response of the HCDM associated with all of
the classes.

_ RM_ 1—

): Rt
1‘“

P. (4)

38 Proe.l.O.A. Vol 14 Part 5 (1992)

 



Proceedlngs of the Institute of Acoustics

COMPARISON BETWEEN HCNNs AND HMMs

To recap. R11 is tlte mean response of the HCDM conesponding to class j to observation saplences
associated witlt class It and M is the number of classes. We can go further by defining a gross
discriminative metric accumulated acres all classes.

it
Pa = 2?: (5)

i=1

To obtain maximal discrimination across all classes we need to maximise Po which we can do using
gradient ascent. if we denote a parameter within the FF (the MLP within the pm HCDM) as on we

can iteratively increase PG using a steepest ascent equation.

..i = 9,; “‘34P; (6)
I

P

where k is an adaptation step size and the superscript of (t denotes the update iteration. We can

derive an expression for the partial differential of PC from equations (5) and (4) in terms of the
differentials of the density mapping results.

it
ali=2i _ER_I'._ (7)

3% tuta¢p 2,3}

I"1

" l are R a “

=2 E775“ ~ air?" ‘8’. , , .

* GER»)
Since o,, is defined as a parameter in the pth model it will only influence the response of that model

resulting in non-zero partial derivitives. Its derivativs with respect to all Other models will be zero,
These zero terms considerably simplify equation (8) allowing the partial derivitive of P6 to be

expressed as.

fi=wl_a_ka_i_lts_,éfls (9,
so, my art, [:ka an,

1-! I.“

Equation (9) provides a way of representing the partial differential of P0 in terms of the partial
differentials of each of the mean MLP outputs. Using equations (3) and (2) we can express the
differentials of the mean outputs in terms of the differentials of the individual density outputs within
the training set as.

8R l ”' 1 ' a
—’1=— — -— a and» (10)
at, N. at. H “ ')}

The notation for F, has been amended to reflect the fact that the MLP mapping depend jointly on its
input vectors 9, and s and on its controlling parameter set. denoted 6b,, A specific weight o, is a

member of this weight set. The combination of equations (9) and (10) therefore allow us to
represent the differential of the gross discriminative metric in terms of the differentials of the
individual MLP mappings. both with respect to a specific weight within the MLP. Minor
modifications to the standard BEP algorithm allow us to derive the differential of a specific MLP
output in terms of a one of its controlling parameters. The HCDM is trained by altemau‘ng between
parameter re-estimation and re-segmentation in an identical fashion to the HCNN and HCLP.
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5.3 Recognition using the HCDM.
Training ts complete when the weight parameters controlling the ML? density mappings associated

with each class have been estimated. The alignment sequences used during training are not saved

since these are unique to the utterances in the training set. During recognition a separate response

value r is calculated to an unlabelled utterance for each of the possible classes. j. using the Viterbi

algori m. The unknown utterance is labelled as the class which has the greatest response k, since

the CD1. training aims to ensure that r, 2 r, V]. The HCDM was tested on a subset on the SI

corpus and compared with identical HCNN and HM tests. Classes 'A'. 'B' and ‘C' only were used

in the corn ‘son. The HCNN provided the poorest test set accuracy of 63.8 d: 4.5%. the HCDM

was signi rcantly better at 85.5 d: 3.3% whilst the HMM performed best with 93.3 :1: 2.3%. The

training set results of 66.2%. 87.6% and 94.4% respectively. suggest all three classifiers were

providing a reasonable level of generalisation.

6.0 CONCLUSIONS

The HCNN was proposed by Levin as a way of explicitly modelling time variability in speech whilst

using a neural net classifier. The system relies on the idea that each speech state should be

characterised by a unique frame to frame prediction function which is modelled by the HCNN's

MLP predictor.

his paper has sought to compare the performance of HCN'N and HMM classifers for recognition

of speech in the SI corpus and it has been shown that the HCNN is very inferior to the HMM.

Insight into the reasons was gained by conducting recognition tests using a set of switched linear

predictors in place of the MLPs in the HCNN. This system is called the Hidden Control Linear

Predictor (HCLP), and the very poor recognition performance it provides suggest that speech states

cannot be adequately characterised by frame to frame prediction functions.

In view of these experimental results, it is concluded that predictive classifiers. such as the HCNN

and HCLP. are unsuitable for the recognition of speech and an alternative neural net classifier called

the Hidden Control Density Mapper (HCDM) has been proposed and tesred. The HCDM has a

similar structure to the HCNN but uses its MLPs to model the observation probabilities instead of

acting as a predictors. This sytcm provides recognition performance approaching that of an HMM

and it is believed that further development may improve its performance still more.
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