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1. INTRODUCTION

Early neural network speech recognition systems were notable for their failure to perform as well as
classical recognisers based on techniques such as Dynamic Time Warping (DTW) and the Hidden
Markov Models (HMM). The failure may be due to the difficulty of explicitly dealing with the time
variability of speech when using neural networks, and various architectures such as the Time Delay
mm (TDNN} and recurrent Multi Layer Perceptron (MLP) have been proposed to solve

Another method of using a neural network in a way which takes explicit account of time variability
has been proposed by Levin and is called the Hidden Control Neural Network (HCNN) [1]. Like
the Mﬂlo:e attempts to model an utterance by a Markov state sequence. However, instead
of associating a specific observed vector emission probability distribution with each state, the HCNN
assurhes that the vectors generated dt.mnF a particular state are characterised by a specific prediction
function which enables the next ob vector to be predicted from previous vectors.

The HCNN classifier consists of a number of word models. Each word model contains an MLP
which has been trained to predict the next frame in the observed frame sequence, for words of a
particular class, from a few of the previous frames. Recognition is performed by applying the
ohservation sequence of an unknown utterance to every word modet and the utterance is assigned the
class of the word model whose MLP produces the least prediction error energy aggregated over the
entre utterance.,

The experimental work described in this paper was designed to evaluate the HCNN for the
recognition of isolated words and to compare the resulls with those obtainable using continuous
density HMMs on the same data. It will be shown that the performance of HCNNS is significantly
worse than HMMs and an investigation into the reasons is described. In particular, it will be shown
that frame to frame prediction functions are not a good characterisation of particular speech states
and that in reality, the HCNN probably does not learn such prediction functions,

As a result of the disappointing performance of HCNNs, a new technigue called the Hidden Control
Density Mapper (HCDM) is pro . The HCDM has a similar architecture to the HCNN but
does not attempt to characterise the speech by predictive functions. Instead, the MLP in each word
model is trained w uce as high an output as possible on utterances belonging to its class and as
low output as possible on utterances of other classes. Thus the recogniser is trained in a class
discriminative fashion, unlike the HMM and HCNN. Recognition is performed by applying the
unknown utterance’s frame sequence to all models and aggrepating each word model MLP's outpul
over the entire utterance. The utterance is assigned the class of the word model producing the

highest score. :
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The HCDM will be shown to perform almost as well as an HMM but without the need for the
estimation of state transition probabilities, and in spite of its currendy inferior performance it is
thought that further development may yield a system which works as well as the H%VI

2. PRINCIPLE OF THE HCNN.

2.1 Architecture of the HCNN.

The architecture of a single HCINN word model is shown in figure 1. As already described, the word
model consists of an MLP which attempts to predict the next frame, C,, in an utterance from
previous frames. In practice, an extremely complex MLP would be required in each word model if it
were required (o synthesise the complete range of state specific prediction fuonctions in a particular
class of utterance. A more robust approach is to select a separate MLP to synthesise the prediction
function associated with each state. Altematively, a single MLP can be used in conjunction with an
extra input to which is applied a state control code, S;. The effect of the state control input is to
“sieer” the MLP to produce the required state specific prediction function. It is the last method
which was proposed by Levin and from which the technique derives its name of Hidden Control
Neural Network.
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Figure 1: Architecture of Single HCNN Word Model (during recognition).

Typically, “one-out-of-N'" codes are used o represent each stale and these are applied to the input
of the MLP in concatenation with the chosen number of past frames. For example, if it is assumed
that the utterance can be modelled by 8 stales, then the control code consists of an 8 element vector,
with just 1 non-zero element. Typically, the prediction is based upon one previous composite Mel
Frequency Cepstral Coefficient (MFCCY) vector of 17 dimensions, and so the total number of inputs
10 the MLP will be 25.

The optimal sequence of control codes is found using the Vilerbi algorithm [2] such that the
aggregated prediction error energy is minimised. The sequence of control codes effectively defines
the sequence of underlying states in the speech during which the required speech frame predictor
has a state specific transfer function. In common with HMMs, the sequence of control codes is
assumed 1o be governed by a Markov process [3].

2.2 Training the HCNN.
The MLP predictor for each class is trained separately by altemnating between two distinct phases -
which are referred to as re-estimation and segmentation. It is of note that the HCNN does not
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perform discriminative leamning like most other neural net classifiers because each MLP predictor is
trained separately. This is probably a significant deficiency in the existing HCNN concept.

Training is staried by choosing an initial segmentation of the utterance. Typically, the uticrance is
uniformly segmented so that equal numbers of speech frames are associated with each of the control
codes. MLP weight re-estimation is then performed using Backward Error Propagation (BEP) [4]
using a randomly picked observation vecior, o,, from a chosen utterance example. The appropriate
control code S, can be referenced for the chosen observation and it is appended to 0, and o,.2 to
produce the overall MLP input vector E;. The target T; will correspond to op. A series of such
examples ag randomly selected and used 1o train the MLP whose weights are updated with each
new examp

Following many weight re-estimations, the segmentation training phase is entered. In this phase, the
MLP is used to predict the next frame in each of the utterance frame sequences and the sequence of
control eodes is optimized using the Viterbi algorithm to minimise the mean prediction error over al}
utterance examples of the particular class. During segmentation, the MLP weights are fixed at
whatever values they had after the previous re-estimation phase.

2.3 Classification Using The HCNN,

Once the optimal MLP weights sets have been found for each class of word, the system can be used
for recognition of unlabelled words. The unknown observation sequence is applied 10 each HCNN
word model and the Viterbi algorithm used to find the optimal sequence of control codes which
minimises the prediction error energy for each model. The utterance is assigned the class of the
model preducing the least error energy. Note that none of the code sequences derived during
training are during recognition. The segmentation process is performed afresh for each class
predictor and is unique for each unlabelled utterance to be classified.

3. WHOLE WORD RECOGNITION USING HCNNs AND HMMs

All experiments Presentcd in this paper were done using the BT speaker independent ‘S1” corpus
which consists of a training set of 3 examples by 52 speakers of each of the letters of the alphabet.
The test set consists of 3 examples of each of the letters spoken by a different set of 52 speakers.
The utterances were encoded as 17 dimensional vectors containing a differential log frame energy,
MFCC coefficients C, to Cg and their time differentials AC to AC3. These delta-MEFCC frames (or
cbservations) were produced every 16ms.

The HCNN's MLP predictors were provided with an input consisting of a sequence of pairs of
delta-MFCC frames concatenated with a “one-out-of-four” control code. Each MLP used 38 input
units, 5 sigmoidal hidden units and had 17 linear output units. A separate model was trained for each
of the 26 word classes. The HMM recopniser consisted of 4 state, no skip, models using a Mixture
of 7 Gaussians w model the emission probabilities in each state (this was the same number of states
used in the HCNN tests). The HMM was trained using Viterbi alignment and clustering, followed
by Baugn lWelch re-estimatjon operating on 17 dimensional delta MFCC veclors as described in
section 3.1.

The HCNN predictor achieved a performance of 34.7 £ 1.5% on the S1 test set and 38.2 %+ 1.5% on
its training set suggesting a reasonable level of generalisation was being achieved. The HMM
provided an accuracy of 94.0  0.8% and 84.5 £ ).1% on the training and test sets respectively.
Confidence limits are set at twice the estimated standard deviation [5).
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4. CHARACTERISING SPEECH BY INTER FRAME RELATIONSHIPS

4.1 Frame to frame prediction function as a speech characteristic.

The essential idea underlying the HCNN recogniser is that each speech state within an utterance
should be characterised by a particular frame to frame prediction function. However, the rather poor
performance of the HCNN compared 10 an HMM suggests that frame to frame prediction functions
are not in reality good characterisers of different specch states. Instead, the MLP may act as a “look
up table”, producing an output value which is determined primarily by the state control code al its
input and which is unrelated to its previous frame inputs. The optimal output in the latter case would
be a vector having the mean value of the observed vectors for that state and the system would exhibit
similar behaviour to an HMM which had a single entry codebook for its state dependent emission

- probabilities.

An experiment was devised to test this hypothesis. It involved a simplified form of HCNN in which
the MLP in each word model was replaced by a set of Linear predictors. Each predictor is selecied in
turn by the sequence of state control codes. Thus, the non-linear mapping of the MLP is replaced by
a sel of linear mappings. The sysiem is called the Hidden Control Linear Predictor (HCLP) and it is
impossible for this system to produce an ocutput just in response to the state control code. If the
HCLP enabled good recognition, it would indicate that prediction functions really are characteristic
of particular speech states. It might be argued thai speech states could be characterised by non-
linear prediction but not by linear prediction functions. However, previous work on the prediction of
line' spectral pair descriptions of speech has shown that non-linear prediction has negligible
advat:dt‘age over linear prediction and it is concluded that MFCC observations are in general Jinearly
rela

4.2 Architecture and operation of the Hidden Control Linear Predictor.

The architecture of HCLP is shown in figure 2 which illustraies the set of linear predictors which are
" selected by the sequence of state control codes. The state control sequence is identical to the

sequence which would have been an input to the MLP in an HCNN.

The HCLP is trained in a very similar manner to the HCNN. Each training utierance is initially
divided into equal length state segments which define the initial state control sequence. The
coefficients of each Jinear predictor are then adapted using gradient descent minimisation of its
prediction error during the period when it is selected by the state control sequence. The coefficients
are adapted at the frame rate of the speech. The error power givenby a linear predictor is a quadratic
function of its coefficients and so convergence to a global minimum is assured.

After each of the training examples have been used several times, the Viterbi algorithm is used o re-
estimate the optimal state segmentation of each utterance, and back propagauon of the prediction
error is re-<commenced 1o adapt the predictor coefficients. The 2 training phases of state
segmentation and coefficient adaptation are aliemately repeated many times.

4,3 Recopnition using the HCLP. .

The HCLP was trained and tested on the S1 corpus using the standard front end processing scheme
described in 3.1. 26 HCLP models were rained corresponding to each of the classes. Each HCLP
used 4 control states, a second order linear predicter being associated with each. The system
achieved 14.3 * 1.1% accuracy on the test set ang 14.7 £ 1.1% on its training set. Tests were also
conducted using fourth order linear predictors but these offered only 9.4  0.9% accuracy on the
lest seL

Although the performance achieved by the HCLP is considerably poorer than any other technique
t2siad on this database, it is still performing approximately 4 times better than a totally random
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classifier. None the less, the results do suggest that frame to frame prediction is a very poor way of
characterising speech states.
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Figure 2: The Hidden Control Linear Predictor (HCLP).

4.4 The effect of the MFCC representation on predictive characterisation.

The previous experiments have shown that the prediction functions relating successive frame values
are poor characterisers of specific speech states. However, it is possible that this is due to the
particular speech representation which has been used, the MECC.,

MFCCs represent the log energy in a section of speech by the value of just one coefficient, Cg. The
remaining coefficients, Cy to Cg, encode the log power spectral shape by resolving it onto a set of
cosine basis functions. If we consider low energy sounds such as fricatives or background noise,
the value of Cg will be low but the values of the other MFCC coefficients will be just as large as
when the speech is a high energy event such as a vowel sound. This is because scaling down
spectral power corresponds 1o a vertical offset in the log spectral envelope: the envelope shape and
hence the Discrete Cosine Transform (DCT) coefficients that describe it remain unaffected. This
means that the estimate of spectral shape encoded by coefficients C, to Cg will be highly variable
during low energy parts of an utterance such as fricatives or stops. This will have a profound effect
on the operation of an HCNN because state-specific prediction of successive frames will be
impossible in these circumstances.

The previous argument suggests that the HCNN may work better with a simple spectral
representation, such as unprocessed filter bank coefficients, Altemnatively, it may be possible to use
MFCCs but to weight the HCNN prediction error by the current frame energy. This would allow
the compactness of the MFCC representation 1o be exploited whilst reducing the significance of
noise-like sounds in the prediction error.

5. THE HIDDEN CONTROL DENSITY MAPPER

5.1 Principle of the Class Discriminative Hidden Control Density Mapper,

The Hidden Control Density Mapper (HCDM) is an atiempt to allow a state based neural-network
classifier to model the distributions associated with training observations, rather than their temporal
correlation, as in the HCNN. In this respect it is similar to the HMM. However, rather than being
trained to directly model the probability density function of the observations associated with each
state, the HCDM is trained 10 maximise the average discrimination between the output of the correct
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classifier and those of all incorrect classifiers. In other words, the system undergoes Class
Discrimative Learning (CDL). Figure 3 shows the HCDM architecture,

If a specific HCDM classifier operates on a training observation sequence associated with class k,
0,= {Qu 0n Cn - Qn} (1)
it will produce a response which is the sum of the density mapping values associated with each of

the observation vectors. If the HCDM corresponding to the j¥ class is used we can denote its
density mapping function F; and its response to a pattem associaled with class k as rj (equation 2).

Observation vector sequence for example q of class k.
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Figure 3;: The Hidden Control Density Mapper (HCDM).
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Here rj9 denotes the response of the jt® HCDM to the g example within the training set labelled as
class k. Tg is the number of vectors constituting the q't example and Fj denotes the density
mapping performed (by an MLP) within the HCDM asscciated with class j.  Finally gy is the
control symbol encoding the correct state for the t*h frame of the Oy which would be produced by
the Viterbi algorithm. If N; denotes the number of training set examples labelled as class k, we can
generate a mean response by considering all of the examples of class k within the training set,

1 rh
Ry=-—"Y & (3
N T,

5.2 Class Discriminative Learning.

The aim of the CDL algorithm is o0 maximise the discrimination between the correct HCDM

response and all the incorrect HCDM responses. The discrimination for Oy can be defined as the

ratio of the response of the correct HCDM 1o the total response of the HCDM associated with all of

the classes,

_ RH

= g
P
j=l

h (4)
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To recap, Ry is the mean response of the HCDM corresponding to class j to observation sequences
associated with class k and M is the number of classes. We can go further by defining a gross
discriminative metric accumulated across all classes,

M
Pe=3p )
kel
To obtain maximal discrimination across all classes we need 10 maximise Pg which we can do using
gradient ascent. If we denote a parameter within the Fp (the MLP within the p HCDM) as ¢, we
can iteratively increase Pg using a steepest ascent equation,

LL) A aP
o =90 +k a—;- ©
P
where k is an adaptation siep size and the superscript of ¢ denotes the updaie iteration. We ¢an
derive an expression for the partial differential of Pg from equations (5) and (4) in terms of the
differentials of the density mapping results,

M
g_Pisz.i _RR_H._ N

®

= 7 - . 2 ii
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Since ¢p is defined as a parameter in the p model it will only influence the response of that model
resulting in non-zero partial derivitives. Its derivatives with respect to all other models will be zero,
These zero terms considerably simplify equation (8) allowing the partial derivilive of Pg to be
expressed as,

P 1 Ry Ry R

a¢’ Z R a¢p km] L] a¢p

P 2: R
=

Equation (9) provides a way of representing the partial differential of Pg in terms of the partial
differentials of each of the mean MLP outputs. Using equations (3} and (2) we can express the
differentials of the mean outputs in terms of the differentials of the individual density outputs within

the training set as,
R, 18(138 9 J
2 =—3 |2 = {Flessa® (10)
3¢, N, Z(T 2 a¢, {Flew a2,
The notation for Fj, has been amended to reflect the fact that the MLP mapping depend jointly on its
input vectors ¢ and s and on its controlling parameter set, denoted @, A specific weight ¢p is a
member of this weight set. The combination of equations (9) and (10) therefore allow us 10
represent the differential of the gross discriminaiive metric in terms of the differentials of the
individual MLP mappings, both with respect to a specific weight within the MLP. Minor
modifications to the standard BEP algorithm allow us 1o derive the differential of a specific MLP
output in terms of a one of its controlling parameters. The HCDM is trained by alternaling between
parameter re-estimation and re-segmentation in an identical fashion to the HCNN and HCLP.

®
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5.3 Recognition using the HCDM.

Training is complete when the weight parameters controlling the MLP density mappings associated
with each class have been estimated. The alignment sequences used during training are not saved
since these are unique to the utterances in the training seL.During recognition a separate response
value rx is calculated o an unlabelled utterance for each of the possible classes, j, using the Viterbi
algorithm. The unknown utierance is labelled as the class which has the greatest response k, since
the CDL training aims Lo ensure that ry 275 Vj. The HCDM was tesied on a subset on the S1

corpus and compared with identical HCNN and HMM tests. Classes ‘A", 'B' and 'C’ only were used
in the comparison. The HCNN provided the poorest test set accuracy of 63.8 & 4.5%, the HCDM
was significantly better at 85.5 X 3.3% whilst the HMM performed best with 93.3 £2.3%. The
training set resolts of 66.2%, 87.6% and 94.4% respectively, suggest all three classifiers were
providing a reasonable level of generalisation.

6.0 CONCLUSIONS

The HCNN was proposed by Levin as a way of explicidy modelling time variability in speech whilst
using a neural net classifier. The system relies on the idea that each speech state should be
characierised by a unique frame (o frame prediction function which is modelled by the HCNN's
MLP predictor.

This paper has sought to compare the performance of HCNN and HMM classifers for recognition
of speech in the SI corpus and it has been shown that the HCNN is very inferior 10 the HMM,
Insight into the reasons was gained by conducting recognition tests using a set of swilched linear
predictors in ptace of the MLPs in the HCNN. This system is called the Hidden Control Linear
Predictor (HCLP), and the very poor recognition performance it provides suggest that speech states
cannot be adequately characterised by frame to frame prediction functions.

In view of these experimental results, it is concluded that predictive classifiers, such as the HCNN
and HCLP, are unsuitable for the recognition of speech and an aliernative neural net classifier called
the Hidden Control Density Mapper (HCDM) has been proposed and tested. The BCDM has a
similar structare to the HCNN but uses its MLPs to model the observation probabilities instead of
acting as a predictors. This sytem provides recognition performance approaching that of an HMM
and itis believed that further development may improve its performance still more.
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