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1. INTRODUCTION

This paper describes a technigue for selecting commonly ooccurring temporal features of speech and
examines techniques by which the features can be probabalistically associated with different
phonemes. The work has been inspired by the phoneme based speech recognition system invented
by Kohonen (1] which uses unsupervised neural arrays to learn speech features. This system is
apparently successful at recognising Finnish and Japanese languages but the authors have had only
limited success in implementing an English language version,

A key problem appears o be finding an appropriate vectar description of acoustic events which are
associated with perceptual entities such as the stop consonants and of reliably mapping the vectors
to an appropriate phonetic label. The techniques used in the Kohonen recognition system are not
disclosed in detail, but appear to be based on the use of concatonated spectral frames to represent
transitory events coupled with the use of hand crafted high level rules to define a mapping from the
spectral vectors to a phonetic label, : :

The work described in this paper arempts 1o systematically search for natural temporal features
which could be subsequently mapped to phonemes or sub word units. The features are represented
by a number of concatonated spectral frames whose values occur frequently in speech,

We have assessed the usefulness of the features by examining the probability of each feature
mapping to a particular phoneme label. A good feature will map unambiguously 1o a single type of
phoneme, whereas a poor feature witl map to many types of phoneme with similar probability. Qur
experiments have used phonemes as the fearure labels, but it should be possible to apply the same

techniques to other types of sub word unit if a suitable transcription of the training utterances is
available.

2. FINDING TEMPORAL FEATURES

2.1 The Nature of Temporal Features

If speech is represented by a series of N-dimensional spectral frames, the progression of an
utterance can be visualised as a trajectory through the N-space in which different speech sounds are
associated with particular shapes of trajectory sub-section.

Natural temporal features can be derived from the N-space trajectory by searching for sub-section
shapes that occur very frequently and this is done very simply by using an unsupervised Kohonen
Network [2] to perform a cluster analysis. The network is exposed to vectors consisting of a
concatonation of successive frames 1aken at spatially equidistant points along the trajeciory and,
eveviually, the weight vectors of the 'neurons’ in the network will tend 10 reflect the values of
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frequently occurring training vectors. The ‘neuron’ weight vectors thereby become the required
“natural temporal features of the speech.

2.2 Trace Segmentation

The previous discussion has assumed that an N-space trajectory corresponding to the speech is
available. However, a succession of spectral frames taken at uniform intervals in time do not
properly define the trajectory because different time warps in the speech may change the times at
which the trajectory is sampled and hence lead to a different set of frame values even though the
trajectory shape remains the same.

The trajectory must be sampled at equal spatial intervals if its shape is to be unambiguously
encoded and this can be done using Trace Segmeniation [5] by selecting frames at equal spatial
intervals along the trajectory. Other intermediate frames are not used in the irace representation of
the speech.

The simple premise behind trace segmentation is that the phonetic description of speech is directly
related to the shape of its N-space trajectory and that the shape is encoded by samples taken at
uniform intervals along the rajectory. The original samples taken at uniform time intervals do not

lie at equal intervals on the N-space trajectory and therefore do not form an unambiguous coding of
its shape.

All the experiments described in this paper have been done using trace segmented speech with a
fiaed spatial sample intcrval adjusted so that average number of frames per word is approximately
20,

2.3 The Spectral Representation

A conventional spectral representation was chosen for the speech used in the tem;;om] feature
experiments. The speech utterances were sampled at 10KHz and processed to form frames
consisting of 8th order LPC derived Mel frequency Cepstral Coefficients (MFCCs). A
pre-emphasis of 6dB per octave is included with the 3db point set at 1KHz. Each frame consists
of nine coefficients comprising the usual MFCCs Cq to Cg and an additional delta energy

coefficient whose value is the logarithm of the ratio of the speech energies in adjacent frames. The
coefficients do not have nommalised variances.

_This representation of speech has been used very successfully in HMM and DTW speech
recognition systems, and no reason is seen to handicap the Kohonen Net system by using other
types of spectral description. The frame rate was set at 4ms to ensure that no information about the
speech articulation was lost during the spectral sampling process.
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3. THE KOHONEN NETWORK

3.1 Operation of Kohonen Network

Kohonen proposed a neural system [2] consisting of a rectangular array of neural elements, which
are all supplied with the same N-dimensional input parern vector, X=[x.... xN]. Each
element containg storage for its own set of synaptic weights. Thus for the it element in the
array a weight vector, Wj can be defined, where W; = [wj]...wiN]. The output of the ith

¢lement is given by a measure of similarity, S(X,Wj), between W and X and in this paper, it is
defined by the Euclidean distance berween X and W;. -

Training of the array takes place as follows. A large representative set of pattern vectors,
X, are collected and are applied without supervision and in random order, to the neural array,
Every time a vector is applied, the element with the largest output-or greatest similarity betwean X
and Wis found. A spatial neighbourhood is defined around the element and the synaptic weight

vectors of all neural elements lying within the neighbourhood are updated such that:

W= Wk (X-W ) e 1

3.2 Kokonen Network as a Vectar Codebook

It can be seen from equation (1) that the array's weight vectors will tend to take on values which
maich the values of commonly occurring input vectors and it is this behaviour which allows the net
to be used as a vector codebook, and, in fact, the weight vectors distribute themselves such that the
mean square error between the training set vectors and nearest weight vector is minimised.

-1t should be noted that other techiques, such as k-means clustering [3] may be computaticnally
simpler for generating the codebook However, the authors have found experimentally that
codebooks generated using the Kohonen net generally give better performance in recognition tasks
using k-nearest neighbour classification.

3.3 The Fast Kohonen Net

In the standard Kohonen Net, training is started with a large neighbourhood and its size is reduced
as training progresses. An initially wide neighbourhood allows global ordering 1o be established,
and subsequent slow reduction allows the weight vectors 1o expand to cover the pattern space.

An alternative technique which has recently been used by many workers is the Fast Kohonen Net
first suggested informally by S.Lutterall of RSRE in which the size of the array is initially set at
2*2 or 4*4. Such small arrays can be made to globally order and converge very rapidly using a
fixed spatial neighbourhood of one. Once convergence bas been obtained in the small net, its size
is doubled, with a new neuron being inserted between every existing neuron, The synaptic weight
of each newly introduced neuron is set at an intermediate .value between the weights of its
immediately surrounding pre-existing neighbours and its value is normally calculated by linear
interpolation. Since the array is already globally ordered there is no need to increase the spatial
" neighbourhood size and the process of net enlargement and training is performed repeatedly until
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the required final array.size is reached. We have found experimentally that the number of training
iterations at any particular array size should be roughly proporticnal to the current number of
neurons in the array. i ‘

" The Fast Kohonen Net algorithm is computationally much faster than the original training scheme
using a shrinking nei ghbourhood and has been used to implement the larger nets described in these
experiments. -

4. CLUSTERING OF TEMPORAL FEATURES
4.1 The Speech Database

Ideally, the database for these experiments would be phonetically very diverse and based on
utterances from many speakers, Unfartunately only & very restricted database is available at present
which consists of 90 utterances of British place names spoken by a single speaker. The place
names were deliberately chosen to be polysyllabic and have been pronounced according to a BBC
Pronunciation Dictionary. An analysis of the frequency of occurrence of each of the phonemes
defined in the dictionary shows that only about 50% of zll possible phoneres are represented with
significant frequency. Although this is plainly undesirable, it is believed that sufficient diversity
‘exists to test for the existence of temporal primitives as described in this paper.

4.2 The Clustering Experiments

The clustering experiments are designed to find if tight clusters corresponding o particular features
exist for certain numbers of concatonated spectral frames taken at random from a diverse set of
speech utterances. A number of training sets have been generated which each consist of 5000
examples of vectors formed by the concatonation of betwesn one and five MFCC frames drawn
randomly from trace segmented isolated utterances. The dimensionality of the training vectors
ranges from 9 to 45,

Two approaches have been used to detect the presence of clusters. In the first, large (32*32)
networks are exposed to each of the training sets and the local density of the resultant weight _
vectors measured. A basic property of a Kohonen net, wrained as described earlier, is that the
distribution of weight vectors mirrors the probablility distribution of the data to which the net has
been exposed. Thus, a cluster in the data space should produce a cluster of ‘weight vectors in the
‘weight space’ which can be detected by measuring the local density of weight veciors in the array.
The veetor lying at the cluster centre can then be selected as a feature. Typically the sixteen tightest
clusters are selected 1o provide a set of sixteen features.

Examples of this type of cluster detection are shown in Fig.1a and 1b, in which the weight vector
density distributions for two 32*32 arrays are plotted. Fig.1a shows the clusters obtained using

single frames as training vectors and Fig.1b shows the results using a concatonation of three
frames. : ' - '

The second approach uses a very small network (4*4) in which it is intended that é\rery neurons's
weight vector become a feature vector. In this situation, it is desirable that the weight vectors
spread to cover the extremities of the data space but at the same tme be attracted to the regionsin
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:
Fig.1a Weight vector density in Fig.1b Weight vector density in
32*32 net trained on single frames. 32%32 net trained on five concatonated frames.

which the data pdf is locally higher than the surrounding pdf. In this way, the array is able to
detect features even if their absolute frequency of occurrence is low,

The desired behaviour can be obtained by modifying the learning algorithm of the network so that
the amount by which a weight vector is updated is proportional to some power, p, of the distance
between the attracting training vector and the weight vector. i.e

“z‘i‘+1=w‘i’+k*(x-v\z‘i‘)*|(x-“§‘)|" ............. 2

Numerous experiments have shown that using a power of 2 causes good convergence and that the
features provided by very small nets correlate better with phoneme types than the features selected
from cluster centres in the large 32*32 nets. The following description of feature labelling will
therefore be restricted to features derived from small nets.

5. ASSESSING FEATURE USEFULNESS
5.1 The Labelling Problem

The usefulness of the features produced using the Kohonen nets can be assessed very crudely by
measuring the relative density of the weight vectors in each cluster. However, a more meaningful
measure of is the degree of correlation between the occurrence of a feature and the presence of a
particular phonetic event in the speech. In other words, can the feature be reliably labelled as a
phoneme or other phonetic unit.

A common method of feature labelling is by excising from speech the spectral vectors which are
thought to be associated with a particular phonetic event and then searching for the feature which
best matches the excised vector. This approach is very unreliable because, except for vowel
sounds, it is very difficult to reliably excise spectral vectors from speech which correspond to
particular events. This paper considers some alternative approaches to labelling of the features.
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5.2 Phoneme-Feature Correlation Estimation

In this technique the phonetic transcription [py...pm] of an utterance and the sequence of features
[f1...f4] it cavses to be emitted from a trained kohonen net are aligned linearly such that the ith
phoneme is aligned with tt%}e1 (i*n/m)th feature in the sequence. tﬁ% small group of features in a
window around the (i*n/m)th point are then associated with the it phoneme and the probability,
P(p;.fi). of the joint occurrence of each of the phoneme and feature types is estimated by counting
the number of times a particular phoneme and feature are associated over the whole of the utierance

database. The joint probability is then normalised to both the apriori probability of the phoneme
and feature type to provide a correlation factor C{py,fy)-

P('Pi!fk)
P(p,) *P(F)

The value of the correlation factor will be greater than one if a positive correlation exists between a
particular phoneme and feature type. An example is given in Table 2 which shows the correlation
values for the features produced by a 4*4 net trained on vectors consisting of triples of
concatonated vectors,

Cip,.fL)= 3

The correlation values produced by this technique are very approximate because linear
segmentation has been used. However, it does provide a guide to the way in which features
derived from different numbers of concatonated frames correlate with different phoneme types and
this information is summarised in Table 3 which shows the number of concatonated frames which
provide the best phoneme-feature correlation value for each kind of phoneme.
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Table 2. Correlation values using features from 4*4 net trained on triples of concatonated frames.
(Correlation values scaled by 5).

5.3 Probability Estimate Using Viterbi Optimisation
The previous technique can be refined by non linear alignment of the phonetic and feature

sequences using the Viterbi [4] algorithm. The Viterbi algorithm allows the most likely alignment
of a sequence of phonemes and a sequence of features to be found if the feature conditional
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probabilities, P(p;ify), of each phoneme are known. In other words the algorithm computes the
probability, Prmgay, of the most likely alignment where:

Pm“-ll P(pIf) e 4
max, path
Mo. of Conctonated
Frames
Phoneme 1 l 2 ' 3 l 4 I S

I 3.4 2.2 2.2 1.4 2.0
a 2.6 2.6 2.6 1.6 2.8
a 2.6 20.2 3.4 10.2 102
-] 33.0 7.8 4.6 4.8 7.4
aaa 3.2 Z.8 .2 2.8 5.4
t 3.0 5.2 18.0 28 2.4
d 3.8 2.4 2.8 1.8 1.6
L4 12.0 32 8.8 2.8 2.4
m 20 2.0 1.8 8.6 8.4
n 1.8 1.6 1.8 4.0 4.0
1 6.4 4.2 28 3.0 4.4
r 3.0 2.4 2.2 1.8 aa
5 ' 8.4 88 3.4 11.0 5.8

Table 3. Maximum phoneme-feature correlation for different numbers of concatonated frames

Initially, only poor estimates for the conditional probabilites are available, but these can be used in
conjunction with the Viterbi algorithm to define a tentative alignment path and the probability
estimates can then be updated using gradient descent, A new alignment path is then computed and
.the process repeated until the conditional probability values are optimized to maximise the
aggregated probability, Py, of the alignment paths of all utterances in the training set where :
no of unerances
Pow = P
i=1

The derivitive d Pyy0/d P(p;lfy) required for gradient descernt optimization is obtained from
equations 4 and 5:

d Pmu.l max,i 6
dP(Pilfk) ullul:umcup(pi]fk)

The modification 10 the conditional probabilities must be done under the constraint that their sum
over all phonemes in the utterance is unity, and the constraint is applied by renormalising all the
conditiona! probabilities after they have been updated.

The optimization algorithm should cause the phoneme_feature correlations to become more
pronounced and make each of the features more discriminatory because the features and phonemes
are being optiimally aligned in time. As an example, the algorithm has been tested by taking the
conditional probability values from which the correlation values in Table 3 have been estimated and
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optimizing them using gradient descent and the Viterbi algorithm. Table 4 shows the comelaticn
values obtained using the optimized conditional probabilities, and it can be seen that in comparison
with the values in Table 3, the correlatons are much greater for specific phoneme-fearure pairs.
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Table 4. Viterbi optimized correlation values using features from 4*4 net trained on triples of
concatonated frames. (Correlation values scaled by 5).

6. CONCLUSIONS

This paper has sought to find if natural temporal features exist which can be described by various
numbers of concatonated spectral frames taken from speech traces. The paper has also atempted to
assess the usefulness of such nawral features by mapping them probabalistically to phonemes and
examining the peakiness of the phoneme-feature prg%ability distribution. Finally an optimization
algorithm has been demonstrated which allows non-linear alignment of a sequence of features and
phonemes in order to better estimate the probabalistic mapping from phoneme to feature.

The results of the investigation into natural fearures are rather disappointing because no clear
optimal length of feature is evident for different phoneme types as indicated in Table 2. This may
be because the selection of frames by race segmentaton is inappropriate, the Kohonen nets used
for cluster detection are not fully converged, or most likely, the phonemes do not map
unambiguously to natural primitives of speech.

More encouragingly, the use of the Vilerbi Optimization algorithm to align the phoneme and feature
sequences does appear to work correctly and an improvement in the cormrelations between specific
phonemes and features is observed using this technique.
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