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I. INTRODUCTION

This paper describes a technique for selecting commonly occurring temporal features of speech andexamines techniques by which the features can be probabalistically associated with differentphonemes. The work has been inspired by the phoneme based speech recognition system inventedby Kohoncn [l] which uses unsupervised neural arraysto learn speech features. This system isapparently successful at recognising Finnish and Japanese languages but the authors have had onlylimited success in implementing an English language version.

A key problem appears to be finding an appropriate vector description of acoustic events which areassociated with perceptual entities such as the stop consonants and ofreliably mapping the vectorsto an appropriate phonetic label. The techniques used in the Kohonen recognition system are notdisclosed in detail. but appear to be based on the use of concatonated spectral frames to representtransitory events coupled with the use of hand crafted high level rules to define a mapping from thespectral vectors to a phonetic label. . -
The work described in this paper attempts to systematically search for natural temporal featureswhich could be subsequently mapped to phonemes or sub word units. The features are representedby a number of concatenated spectral frames whose values occur frequently in speech.

We have assessed the usefulness of the features by examining the probability of each featuremapping to a particular phoneme label. A good feature will map unambiguously to a single type ofphoneme, whereas a poor feature will map to many types of phoneme with similar probability. Ourexperiments have used phonemes as the feature labels. but it should be possible to apply the sametechniques to other types of sub word unit if a suitable transcription of the training utterances isavailable.

2. FINDING TEMPORAL FEATURES

2.1 The Nature of Temporal Features

[1‘ speech is represented by a series of N-dimensional spectral frames. the progression of anutterance can be visnalised as a trajectory through the N-space in which different speech sounds areassociated with particular shapes of trajectory sub-section.

Natural temporal features can be derived the N-space trajectory by searching for sub-section
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frequently occurring training vectors. The 'neuron' weight vectors thereby become the required
natural temporal feath of the speech.

2.2 Trace Segmentation

The previous discussion has assumed that an N-space trajectory corresponding to the speech is
available. However. a succession of spectral frames taken at uniform intervals in time do not
properly define the n'ajcctory because different time warps in the sfeech may change the times at
which the. trajectory is sampled and hence lead to a different set 0 frame values even though the
trajectory shape remains the same.

The trajectory must be sampled at equal spatial intervals if its shape is to be unambiguously
encoded and this can be done using Trace Segmenrarian [5] by selectin frames at equal spatial
intervals along the trajectory. Other intermediate frames are not used in e trace representation of
the speech.

The simple premise behind trace segmentation is that the phonetic description of speech is directly
related to the shape of its N-spaoe trajectory and that the shape is encoded by samples taken at
uniform intervals along the trajectory. The original sam les taken at uniform time intervals do not
lie at equal intervals on the N-space trajectory and there ore do not form an unambiguous coding of
its shape.

All the experiments described in this paper have been done using trace segmented speech with a
flaw spatial sample interval adjusted so that average number of frames per word is approximately
2 .

2.3 The Spectral Representation

A conventional specnal representation was chosen for the speech used in the tem oral feature
experiments. The speech utterances were sampled at lOKl-lz and processed to arm frames
consisting of 8m order LPC derived Mel frequency Cepstral Coefficients (MFCCs). A
pre-emphasis of 6dB per octave is included with the Bob point set at lKHz. Each frame consists
of nine coefficients comprising the usual MFCCs C1 to Cg and an additional delta energy

coefficient whose value is the logarithm of the ratio of the speech energies in adjacent frames. The
coefficients do not have normalised variances.

This representation of speech has been used very successfully in HM and DTW speech
recognition systems. and no reason is seen to handicap the Kohonen Net system by using other
types of spectral description. We frame rate was set at 4ms to ensure that no information about the
speech articulation was lost during the spectral sampling process.
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3. THE KOHONEN NETWORK

3.1 Operation of Kohonen Network

Kohonen proposed a neural system [2] consisting of a rectangular array of neural elements, which
are all supplied with the same N-dimensional input pattern vector. X=[x...r xN]. Each
element contains storage for itsownset of synaptic weights. Thus for the i1h element in the
array a weight vector. Wi can be defined. where Wi = [wi1...wiN]. The output of the ith
element is given by a measure of similarity, S(X,Wi). between W and X and in this paper. it is
defined by the Euclidean diatance between X and Wi. '

Training of the array takes place as follows. A large representative set of pattern vectors.
X. are collected and are applied without supervision and in random order. to the neural array.
Every time a vector is applied, the element with the largest output or greatest similarity between X
and W is found. A spatial neighbourhood is defined around the element and the synaptic weight
vectors of all neural elements lying within the neighbourhood are updated such that:

w'i'*‘=w'i'+ k‘(X-W'i') 1 .

3.2 Kohonen Network as a Vector Codebook

It can be seen from equation (1) that the array's weight vectors will tend to take on values which
match the values of commonly occurring input vectors and it is this behaviour which allows the net
to be used as a vector codebook, and, in fact. the weight vectors distribute themselves such that the
mean square error between the training set vectors and nearest weight vector is minimised

- It should be noted that other techiques. such as k-means clustering [3] may be computationally
simpler for generating the codeka However. the authors have found experimentally that
codebooks generated using the Kohonen net generally give bener performance in recognition tasks
using k-nearest neighbour classification.

3.3 The Fast Kohonen Net

In the standard Kohonen Net. training is started with a large neighbourhood and its size is reduced
as training progresses. Anjnitially wide neighbourhood allows global ordering to be established.
and subsequent slow reduction allows the weight vectors to expand to cover the pattern space.

An alternative technique which has recently been used by many workers is the Farr Kahanen Ne!
first suggested informally by S.Lutterall of RSRE in which the size of the array is initially set at
2‘2 or 4‘4. Such small arrays .can be made to globally order and converge very rapidly using a
fixed spatial neighbourhood of one. Once convergence has been obtained in the small net. its size
is doubled. with a new neuron being insened between every existing neuron. The synaptic weight
of each newly introduced neuron is set at an intermediatevalue between the weights of its
immediately surrounding pre—existing neighbours and its value is normally calculated by linear
interpolation. Since the array is already globally ordered there is no need to increase the spatial
neighbourhood size and the process of net enlargement and trainingis performed repeatedly until
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the required final arraysize is reached. We have found experimentally that the number of training

iterations at any particular array size should be roughly proportional to the current number of

neurons in the array.

The Fast Kohonen Net algorithm is computationally much faster than tlte original training scheme

using a shrinking neighbourhood and has been used to implement the larger nets described in these

experiments. '

4. CLUSTERING 0F TEMPORAL FEATURES

4.1 The Speech Database

Ideally, the database for these experiments would be phonetically] very diverse and based on

utterances from many speakers. Unfortunately only a very restricted tabase is available at present

which consists of 90 utterances of British place names spoken by a single speaker. The place

names were deliberately chosen to be polysyllabic and have been pronounced according to a BBC

Pronunciation Dictionary. An analysis of the frequency of occurrence of each of the phonemes

defined in the dictionary shows that only about 50% of all possible phonemes are represented with

significant frequency. Although this is plainly undesirable, it is believed that sufficient diversity

exists to test for the existence of temporal primitives as described in this paper.

4.2 The Clustering Experiments

The clustering experiments are designed to find if tight clusters corresponding to particular features

exist for certain numbers of concatonated spectral frames taken at random from a diverse set of

speech utterances. A number of training sets have been generated which each consist of 5000

examples of vectors formed by the concatenation of between one and five MFCC frames drawn

randomly from trace segmented isolated utterances. The dimensionality of the training vectors

ranges from 9 to 45.

Two approaches have beenused to detect the presence of clusters. In the first, large (32‘32)

networks are exposed to each of the training sets and the local density of the resultant weight _

vectors measured. A basic property of a Kohonen net. trained as described earlier. is that the

distribution of weight vectors mirrors the probablility distribution of the data to which the net has

been exposed 'lhus. a cluster in the data space should produce a cluster of 'weight vectors in the

'weight space' which can be detected by measuring the local density of weight vectors in the array.

The vector lying at the cluster centre can then be selected as a feature. Typically the sixteen tightest

clusters are selected to provide a set of sixteen features.

Examples of this type ofcluster detection are shown in Fight and lb , in which the weight Vector

density distributions for two 32‘32 arrays are plotted. Fig.1a shows the clusters obtained using

single frames as training vectors and Fig.lb shows the results using a concatonation of three

frames. ' « ’

The second approach uses a very small network (4‘4) in which it is intended that every neurons's

weight vector become a feature vector. In this situation. it is desirable that the weight vectors

spread to cover the extremities of the data space but at the same time be attracted to the regions in _
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Fig. la Weight vector density in
32*32 net trainedon single frames.

Fig.1b Weight vector density in
32*32 net trained on five concatenated frames.

which the data pdf is locally higher than the surrounding pdf. In this way, the array is able to
detect features even if their absolute frequency of occurrence is low.

The desired behaviour can be obtained by modifying the learning algorithm of the network so that
the amount by which a weight vector is updated is proportional to some power. p. of the distance
between the attracting training vector and the weight vector. i.e

w‘i‘“=w‘i‘+ k*(XmW:')*I(X-W'i')lp 2
Numerous experiments have shown that using a power of 2 causes good convergence and that the
features provided by very small nets correlate better with phoneme types than the features selected
from cluster centres in the large 32*32 nee. The following description of feature labelling will
therefore be restricted to features derived Erorn small nets.

5. ASSESSING FEATURE USEFULNESS

5.1 The Labelling Problem

The usefulness of the features produced using the Kohonen nets can be assessed very cruder by
measuring the relative density of the weight vectors in each cluster. However. a more meaningful
measure of is the degree of cortelation between the occurrence of a feature and the presence of a
particular phonetic event in the speech. In other words. can the feature be reiiably labelled as a
phoneme or other phonetic unit.

A common method of feature labelling is by excising from speech the spectral vectors which are
thought to be associated with a particular phonetic event and than searching for the feature which
best matches the excised vector. This approach is very unreliable because, except for vowel
sounds. it is very difficult to reliably excise spectral vectors from speech which correspond to
particular events. This paper considers sortie alternative approaches to labelling of the features.

Proc.l.O.A. V0! 12 Pad 10 (1990) 263

  



 

Proceedings of the Instilule ol Acoustics

TEWORAL FEATURES OF SPEECH

5.2 Phoneme-Feature Correlation Estimation

In this technique the phonetic transcription [Mayra] of an utterance and the sequence of features

if1min] it causes to be emitted from a trained kohonen net ate aligned linearly such that the i'h

phoneme is aligned with the (i"‘n.lntt)lll feature in the sequence. small group offeatures in a
window around the (i“n.i'n1)‘h point are then associated with the i phoneme and the probability.
Ptphfg). of the joint occurrence of each of the phoneme and feature types is estimated by counting

the number of times a particular phoneme and feature are associated over the whole of the utterance
database. The joint probability is then normalised to both the aprlnri probability of the phoneme
and feature type to provide a correlation factor C(pifk).

Pippa) .......... ,.

The value of the correlation factor will be greater than one if a positive correlation exists between a
particular phoneme and feature type. An example is given in Table 2 which shows the correlation
values for the features produced by a 4‘4 not trained on vectors consisting of triples of
concatenated vectors.

C(pi.fk)=

The correlation values produced by this technique are very approximate because linear
segmentation has been used. However, it does provide a guide to the way in which features
derived from different numbers of concatenated frames correlate with different phoneme types and
this information is summarised in Table 3 which shows the number of concatenated frames which
provide the best phoneme-feature conelau'on value for each kind of phoneme.

1 4 4 3 0 5 S 3 0 8 5 ll 0 O 0 0 7
e 0 13 9 0 6 3 l 0 0 t) 12 G 2 0 0 3
a 5 14 17 0 2 l 2 O 0 2 3 0 2 I) O 0
o 4 4 0 0 4 l 17 0 0 0 0 0 23 O 0 3
3321 5 3 4 0 4 6 l 0 11 8 4 0 1 0 0 0
t 5 0 15 18 3 5 l 0 15 14 0 0 0 90 0 5
d 3 3 l4 0 4 9 3 0 0 3 14 0 4 0 0 3
k 17 4 6 48 5 l 5 0 2 0 2 0 5 0' 0 0
m 3 6 0 0 8 3 6 0 0 l 9 0 4 0 O 1
n 2 1 0 0 8 9 4 0 9 4 7 0 3 0 0 0
1 7 3 3 0 3 4 l4 0 0 2 6 0 5 0 0 5
r 6 8 0 11 3 3 3 0 2 3 O 0 9 0 0 0
s B l 0 O l 3 3 0 19 12 0 0 0 0 0 17

Table 2. Correlation values using features from 4‘4 net trained on triples of concatenated frames.
(Correlation values scaled by 5).

5.3 Probability Estimate Using Viterbi Optimisation

The previous technique can be refined by non linear alignment of the phonetic and feature
sequences using the Viterbi [4] algorithm The Viterhi algorithm allows the most likely alignment
of a sequence of phonemes and a sequence of features to be found if the feature conditional
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probabilities. P(pi|fk). of each phoneme are known. In other words the algorithm computes the
probability, Pm, of the most likely alignment where:

pmu=H P(pi|fk) ...............4
max path

No. 0' Canctonatad
Framas   

 

   

  

           
        

          
I 3.‘ 2.2 2.2 1 .4 2.0o 2.0 2.8 2.3 1 .6 2.0a 2.0 20.2 3.4 1 0.2 1 0.20 33.0 7.0 4.0 4.0 7.4as 3.2 2.8 2.2 2.6 5.4t 3.0 5.2 1 3.0 2.3 2.6
a 3.8 2.4 2.0 1 .8 1 .6k 1 2.0 3.2 9.3 2.8 2.4m 2.0 2.0 1 .8 0.6 0.4n 1.6 1.3 1 .5 4.0 4.0I 6.4 4.2 2.3 3.0 4.4r 3.0 2.4 2.2 1 .0 3.0e 5.4 5.0 3.4 1 1 ,0 5.5

  

   

Table 3. Maximum phoneme-feature correlation for different numbers of concatenated frames

Initially. only poor estimates for the conditional probabilites are available. but these can be used inconjunction with the Viterbi algorithm to define a tentative alignment path and the probabilityestimates can then be updated using gradient descent A new alignment path is then computed and.the process repeated until the conditional probability values are optimized to maximise theaggregated probability, PM of the alignment paths of all utterances in the training set where :
no of ans-noes

Pmm = PM“.i .............. .. 5
i=1

The derivitive d Plow/d P(pi|fk) required for gradient descernt optimization is obtained from
equations 4 and 5:

“A = z max.i ‘ 6

dP(pilfk) —"P(Pi”k) ......... ..
all utterances

The modification to the conditional probabilities must be done under the constm'nt that their sumover all phonemes in the utterance is unity, and the constraint is applied by renormalising all theconditional probabilities after they have beenupdated.

The optimization algorithm should cause the phoneme_feature correlations to become morepronounced and make each of the features more discriminatory because the features and phonemesare being optiimally aligned in time. As an example, the algorithm has been tested by taking theconditional probability values from which the correlation values in Table 3 have been estimated and
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optimizing them using gradient descent and the Viterbi algorithm. Table 4 shows the correlation
values obtained using the optimized conditional probabilities. and it can be seen that in comparison
with the values in Table 3. the correlations are much greater for specific phoneme-feature pairs.

 

cs...

  

Table 4. Viterbi optimized correlation values using features from 4‘4 net trained on triples of
concatonated frames. (Correlation values scaled by 5).

6. CONCLUSIONS

This paper has sought to find if natural temporal features exist which can be described by various
numbers of concatenated spectral harms taken from speech traces. The paper has also Attempted to
assess the usefulness of such natural features by ma ing them probabalistically to phonemes and
examining the peakiness of the phoneme-feature prglbability distribution. Finally an optimization
algorithm has been demonstrated which allows non-linear alignment of a sequence of features and

phonemes in order to better estimate the probabalistic mapping from phoneme to feature.

The results of the investigation into natural features are rather disappointing because no clear
optimal length of feature is evident for different phoneme types as indicated in Table 2. This may
be because the selection of frames by trace segmentation is inappropriate. the Kohonen nets used
for cluster detection are not fully converged, or most likely. the phonemes do not map
unambiguously to natural primitives of speech.

More encouragingly. the use of the Viterbi Optimization algorithm to align the phoneme and feature
sequences does appear to work comedy and an improvement in the correlations between specific
phonemes and features is observed using this technique.
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