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1. INTRODUCTION

The necessity of non-destructively inspecting cast steels, weldments, fibre reinforced materials, and other
inherently anisotropic matetials has stimulated renewed interest in ultrasonjc wave propagation in anisotropic
and inbomogenecus media. In a recent article, Abrahams & Wickham (1991a), the authors considered the
refraction of a horizontally polarized shear source at the “fusion interface” between an isotropi¢ material F
and an inhomogeneous transversely isotropic solid W. The inhomogeneity in the latter was chesen to be
characteristic of the type of erystalline structures produced in austenitic steel welds. In these it is found that,
as the weld metal cools, the cryatals align themselves so that an axis of symmetry lies paraliel to the direction
of heat flow. This process of “epitaxial growth” produces a coherent macroscopic structure characterized by
a “grain angle” whose principal variation is witk distance from the fusion interface. The avthors modelled
the latter by allowing the direction # of the zonal axis or axis of symmetry of the crystals to be a function of
the perpendicular distance z from the interface, see figure 1. The mathematical boundary value problem was
solved exactly, and, in the high frequency. limit, a uniform asymptotic expansion for the displacement vector
was found. It was shown that in this limit, and for a wide range of material constants, the refracted energy
could experience total internal reflection in the anisotropic domain. In this paper we outline the analysis
for the much more complicated case where the displacement veetor lies in the plane of propagation (two-
dimensional plane strain). We evaluate the field analytically and demonstrate a relatively simple gualitative
determination of the structure of the refracted waves. As in the SH-case we show that Lotal internal reflection
can occur for certain grain structures and elastic moduli. Our conclusions appear to be highly significant in
the design of inspection procedures for structurally important welds.

2. FORMULATION OF THE REFRACTION PROBLEM FOR A COMPRESSIONAL SOURCE

Consider a set of focal cartesian coordinates (2, §j, ) with § = y and  parallel to the zonal axis at that point,
see figure 1. Relative to such a frame of reference, Hooke's law may be written in the form

Fi5 = &Gijufu (

where the fourth order Lensor &3 contains five independent entries. We shall assume that Uie density of both
materials are constant and &;i is a constant function of position in W, i.e. all the anisotropic crystals are
¢lastically identical. In this case it is evident that the general stress-strain law relative to earlesian coordinates
(z.y, 1) is of the form '

Tij = c.-j"(a)su. (2)
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Figure I: The geometry of the problem showing the source position S, the grain angle #(z) and the grain

coordinates (z,3) T

- IR

The orthogonal transformation describing a rotation § about the y-axis is given by the second order tensor

cosf 0 -sind
a.-;(a)=( o 1 o ) ®

sind 0 emséd

so that
Eijit = aip(8)a;o(B)ar, (B)an (B)eper, (8), ()
or
Cpers = pi(B)ag; (B)ars (F)a,u{ )i, (5)
This last result conveniently expresses the Booke's tensor in terms of the orientation of the zona! axis and

hence as a function of z. For completeness we display the matrix form of equation (1) using the engineering
notation for strain, namely ’

1 &y &3 &8s 0 0 0O 1
Faz fi3 fn. H13 0 0 0 #22
Tas |_| &3 €3 &9 0 O 0 £33 (6)
s} 0 0 0 & 0 0 &
Tis 0 0 0 0 &4 0 &3
P12 0 0 ] 0 0 [ €13
for a hexagonal material with
Tos = (E11 — &12)/2 . (7)
and
Bj=€y i=J,  Ey=UWy, if] (8)

We now consider a state of plane strain in which u = (u(z, 2},0, w{z, 2)) so that the only non-vanishing strain
COMPONENis are £;:,¢,, and £, in FUW. It is supposed that an isotrapic time-harmonic line source is
situated at (0, 2), where ' < 0 and is reflected and refracted at the plane interface z = 0 belween 5 and W,
Thus, if ¢(z, 2), v{z, 2} are the usual Lamé polentials for the motion in F, we have

_ i
m ‘F:T*"”a—q' (%)
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where, for a compressional source of strength ¢p,

74 LN = e
Gty T et } (z2)€F, (10)
in which
B = el /(0 +21), K?= puta?/u (1

are ihe dimensionless compression and shear wavenumbers respeclively, A, u are the Lamé constants for &
and a is a typical length scale of the grain structure in W, In {10) and all the subsequent theory, all lengths
have been scaled on a. In the inhomogeneous material W, the general equation of motion is

8 _ Sux 7, _
a—qc,,“(a) B + Ny =0, (z,2)eW {12)
where
Cijet(0) = €ijur(#)/Eaq .y

and N2 = pu?a%/,4. Our task is to determine a solution of (12) with (10} which satisfies the welded interface
boundaty conditions '

u(z,0*) = u(x,07), 0 <z < o0 (14)
" (=,0%) (z,07)
Taal 2, = Tz,
r,,(:,[}"‘) = 1."(:’0-) }. —0C T <o (]5)

where 7; is the stress tensor, and tepresenis outgoing waves at infinity. In z < 0 we have the siress
displacement relations in the form

e = 2 %+%§ +K% o
while in 2 > 0 ~ s
T = E.-sn(ﬂ)'é';- (17

3. FORMAL SOLUTION OF THE TRANSMISS5ION PROBLEM

We take Fourier transforms of the system of partial differential equations and boundary conditions with
respect to the spatial variable 2, In particular, if

Ula,2) = jm u(z, :)ei°”’ dz, (18)

we find that U(a, =) satisfies the ordinary differential equation

d.du T dU  dQ L _ o? =0 :
P -ma{(q+q )dx+dzu}+:v(1 aR)U =0, >0, (19)
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where
Pulz) = &am(8(z)), Qulz) = Eaulf(=)), Rulz) = &nnl((2))- (20)

Assuming that we can find precisely two lincarly independent solutions of this equation which are source-free
in = > 0, we write the general solution for the motion in W as

Ula, 1;1') = Ut (a, )5S (a, z) + U7 (a, 21517 {a, 2). (21)

The notation here is intended to echo the fact that, at any particular point, we expect that the displacement
field is representable as the superposition of a “quasi-longitudinal” and a “quasi-transverse” wave. For the
moment we proceed assuming these special functions are known and that all we need to complete the solution
is to caleulate the undetermined coefficients /" and I/*T. Returning to equations (10), we find that the
appropriate solutions for ($({a, z;z'), ¥{a, z; z')}, the Fourier transforms of ¢(z, z; ) and t(z, 2; 2’), are of
the form

T P o Nay(a) _ ) -Ny(a)fras’|
(o, 5;2°)y = @ (a,2)e —2N7(a)e i< (22)
Vo, z;2") = ¥(a, )N, 2 <o, (23)
where
¥(a)

(a? - KN}, }
Ka) = (a® - KN
and we choose those branches of the square roots which have positive real parts on the Fourier inversion

contour. Substituting from (21), (22) and (23) into the Fourier transforms of the boundary conditions (14)
and (15), we obtain the transmission conditions

(24

h

Dw(e)W ~ Ds(a)F
¥Tw(e)W — T5{a)F

Ds(-0)Fq, (25)
=Tx(-a}Fo, (26)

respectively, where v = Z;4/g,

() we(B) e (R

¥ usT

and the matrices D g Dy, Tx and Ty are given by

pre) = (o ), 28)
_ g1 f S0 57 (a0}
Dwie) = N1 (Tl Gle ), (@)
~Zay(o) =of - &{a) :
Trla) = (a’-l-g:"((u)) ~Ziab(a) ) (30)
Tw(e}) = -iaQ(0)Dw(a)+ P{0)Diy(a) {31
and .
a5t 2517
oy y-2 [ Eta0) -?:;(o.m), 2
wleh= A (‘—iéi(a.o) £ (0,0) @)
T follows that there exist unique values for W and F provided
det[vTw(a) - T5(a} [Dx{a)]”} Dw(a)) #0. (33)

128 Proc.l.0.A. Vol 13 Part 2 (1881)




Proceedings of the Institute of Acoustics T e e s

REFRACTION OF ULTRASOUND IN GRAINY MATERIALS

We expect that, for certain values of the elastic moduli, the left hand side of (33) will vanish for discrete
real values of a. Such points correspond to Stonely type interfacia) waves and our inversion contour must be
indented 50 as to ensure that these radiate to infinity.

This completes the formal determination of the undetermined eoeflicients; Fourier inversion now vields

. 00 .
dlr, 1) = ‘—fﬂﬁg"(k\/(z - +:7)+ % j_ . (0, 2")eN 1) gm0 gpry, (34)
oo -
v.!v(:,y;z') = ‘;_j '»I‘s(a,z')e”‘(ﬂ'e""‘""’dNﬂ, (35).
L
in z < 0 and

u(z,z3) = 2lﬂ j: " [V (0, 2)5 (@, 2) 4 U (@, #)ST (o, eV ey 130, (36)

where, us indieated earlier, the contour of integration is chosen so that the wave motion is outgoing at infinity.
We note that it is possible to explicitly display all the various mode conversions by writing

¥e2) = godTP(a)eN N, (37)

Vo, 2') = gUPS(a)eNrlon’, (38)

Ul(a,7) = @UPPE(a)e™ o)’ (39)
and ,

UT(a,2) = gUPiT(a)eNrion’, ’ (40)

where UP*E(a) is the spectral amplitude of the quasi-longitudinal mode converted from the incident P-wave,
elc.
4. DETERMINATION OF S¥& anp S¢T

Anticipating the possibility of “turning points™ in the refracted field {total internal reflection), it is natural
to seek a solution of (19) using the ansatz

Ula, ) = MW, (o,2) f; 215 4 G, Cla, 2) i o D
where ' o '
F(N.Q) = AINY0), G(N. ()= NEAT (NI, , (42)

and the undetermined functions &(a, z), ¢(a, 2), an{a, z) and b.(a, 2) are all supposed slowly varying. Sub-
stituting (41) into (19) and equating cocficients of N¥ F and NG 1o zero forj=2,1,0,—1,~2,... and using
Airy's differential equation - - C
Ai"(2) = ZA(Z) : (43)
yields a recursive system of differential-algebraic relations for the unknown functions. To leading order we
oblain

P[-€7a0 + 2CC'EBo + (a0l - (Q + QT )[~a¢'ay +ia¢¢'bo) + (I~ a?R)ap =0 © (44)
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and -
P[~£bo + 2i{"E'a0 + ¢('bo) - (Q + QT )[-af'bo + ia"ag] + (I~ a’Ribg = 0, (45)

where the prime denotes ﬂ- Multiplying (44) by ¢~ % and {45) by {1 and adding and subtracting the resulting
identities we find that

[P(A%)? - o(Q+ QT)AL - (1- a’R)AE = o, (46)
where
A% = £(e, 1) Fi¢Ha, ) (0, 2) {47)
and
A = ¢~tagle, ) 2 (1o, 2)bola, 2). (48)

A necessary and sufficient conditon for {46) to have & non-trivial solution for AT is

det{P(A%)? - o(Q+QT)AX - (I- o’R)] = 0, (49)

a quartic equation for the determination of A%. Proceeding to the next order in the expansion we find similarly
that

P(A)? - o(Q + QT)AE — (I- ’R)JAT = £F, - (50)
where
fi(o,z) = —iPAFYAT - i(PAFAYY +iaQ' A +ia(Q +QT)Af
$IPAT(A* + A7) - 0(@ + QT)AT] &)

and so a necessary condition for there to be a solution of (50} is that fF is orthogonal! to A3, je.
()7 AF =0. (52)

Adding (52) to the transpose of itself, using (46) and a symmetry argument yields the simple uncoupled
conservation equatlions . s
[(a$)T (2PA* —a(@+QT) A7] = 0. (53)
" Now let d(f be unit vectors in Lhe direction of the leading order amplitudes Ao*, then the general solutions of
(53) are

At
AF = dj(a.2) [1 TR REGG) - T RE0)) (54)
where
FEO(:)) = (42)TPAE, RE@(:) = (a3)7RAE. (55)

We assume that, in principle at least, the higher order amplitude coefficients in the expansion (41) may be
obtained by repeated application of the orthogonality condition.

Now for real values of , the characteristic equation (49) can only have real roots or roots occuring in complex
conjugale paira. ]t follows that, without less of generality, we may choose §(a, ) and ({a, =) to be real valued
functions for alt real or. If {(er, 2) is of one sign and bounded away from zero for all &, z then we may replace
the Airy functions by their asymptotic expansions for large argument. We find that

Ula, =) —— A7 expiNx (@, 2)(1 + O(N™ l)). $(a,2) >0, (56)

N'Ni

Ula, =) 2‘/_”* [Ag expiNy~(a,2) —iAT expiNyt(a,2)] (1 + O(N™')), ({a,2) <0, (57)
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where . '
£ £xifcd '-"“} ' (58)
EF3-0%F (<0 [
On the other hand, if { changes sign as z varies for a given a, i.c. the differential equation (19} has a turning
value, then it is clear that this approximation is not uniformly valid near { = (. Indeed; it is. readily seen
from (48} that the denominator in (54) also vanishes as ¢ — 0. However, if we choosa

, .
xE(er, 2) =/ At(a, ) dt, (59)
.
where z* is chosen for each value of o 8o that

{(xz") =0, ‘ © (60)

then it is clear that the coefficients ag, by remain bounded and the approximation {41) is uniformly valid
through the turning values. We conclude that it is in fact essential Lo choose £,¢ 1o be rea) for real values of
o for the latter property to hold. Further, it is also necessary to chooee ¥~ (o, z) to have positive imaginary
part on the Fourier inversion contour for the integrals to converge. It turns out that the latter condition is
also sufficient to ensure that the waves correspanding to a particular propagating mode radiate guiwards at
infinity. To complete the formal solution of the refraction problem we need Lo choose two linearly independent
solutions of (19) which we have nominally labelled S¢% and ST, We shall describe this process for the refracted
quasi-longitudinal wave in the following section.

5. THE REFRACTED QUASI-LONGITUDINAL WAVES

The complete detailed evaluation of the refracted and reflected field for an incident compression and shear
source is given in Abrahams & Wickham, (1991b). Here we outline the construction of the refracted “quasi-
compression waves” uP?E for the current problem; we have from (36) ’

oo n
ufil(z, 1) = %:_u/ UPSL(a)§tE(a, g)gMr(a)e ~lake g o o ) ()]
-0

The structure of this integral is in fact exactly analogous to the corresponding result studied by the authars
(Abrahams & Wickham, 1991a) for the case of horizontally polarised shear waves. Following the procedure
used there, it may be shown that, for a given value of (=, 2}, the contour of integration may be deformed
away from the turning values of the differential equation (19) so that the arguments of the Airy functions are
uniformly large over the whele of the integration range. This justifies replacing (41) by the approximations
(56) and (57} as appropriate and then restoring the contour of integration to the whole of the real a-axis. Qver
thal part of the integration range where ((a, :) is negative it turns out that the determinant in (33) and hence
the amplitude factor U7 is not slowly varying as N — co! However, as in Abrahams & Wickham (1991a),
it is possible to expand the inverse of this determinant in & power series of rapidly varying exponentials so
that the resulting expression for u”*¥ is an infinite sum of classical diffraction integrals. The first of those is
of the form

o0 Lo .
wfthiz, 52 = %':-] UUP""(a]AD_(u, et olersia’) g (62)
-0

where the amplitude factor U{:’"" varies slowly with a and the phase is given by

sl = [ 4, (0.2)d - info)e - o, (63

Proc..0.A. Vot 13 Part 2 (1991) 131




Proceedings of the Institute of Acoustics
REFRACTION OF ULTRASOUND IN GRAINY MATERIALS

The integral in (62), and all the subsequent terms in the series, ate now in a form suitable for applying Kelvin's
method of stationary phase, However, all this assumes that we have nlready decided which eigensolution of
{46) corresponds to A

I we focus attention on a particular station (z,z) in W, then the motion corresponding to {62) is the
superposition of Fourier contributions over a continuous spectrum of the z-component of the slowness vector,
To see this, consider a neighbouring point (z + Az,z + Az) =1+ Ar. There, we have a contribution to the
Fourier integral which, to leading order in Ar, is given by

U™ (0) A (o, 1)l o5 iV Erader, ar-iva ) | O(Az, Az)), (64)

where, for completeness we have included the time dependence in this expression. By re-writing the increment
in the phase as
Nyradgp Ar —wt = Keql{ngr Ar — e31) = wis.Ar — n, (65)

we are able Lo identify the Jocal wavenumber, K,; phase normal 0y, phase speed ¢,z and slowness vectors

according to
Ky = N\/c’+(A;L) . (66)
(Al Dpfar + (a7)’, (67)

= w/Ky {68)

s = a0 /E, | (69)

respectively. The wave kinematics only depend on the local material Pproperties, which, are constant relative
Lo the grain coordinates. Thus
§i = ajj8; {70)
But (a, A7 (o, 2)) satisfies the characteristic equation (49) end so, using (70} to eliminate o and A (e, 1),
we obtain an equation independent of 8, namely
il + B](53C0 — &g — 1) + &8 — (& + 1) + 12 0, (7
with
CD = 5336“ - l‘-.‘?, - 26|a. (72)

Equation (71) is precisely the slowness sutface for a homogeneous transversely isotropic material in plane
strain with the zonal axis in the d-direction, Musgrave (1970}, pp 96-101. This quartic sutface separates
trivially into two sheets, which, when expressed in polar coordinates

B =dsing, &, =icosyp, (73)

are given by

B _ A+ /AT 3B(y)
tu 28(¢) '
where 4 is the trace of the plane-strain Hookean Lensor, ie,

(74)

A= a4+ &y + 264 (75)
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and
B(¢) = Zastas cas® p + Csin? p cos? g + &, 2gq sin (76)
with
C =838, 4 E?; — 2613854 (17}
The sheet corresponding (o the greater phase speed is associated with the quasi-longit udinal motion, je.
3_FEal &, 2B(p)
[ e —— 78
_(11') P&.i PA" /Ag_qs(p) ( )

Thus, given a value of r and ayg such that equation (49) has a real solution A7 (ao,2), we may calculate
the corresponding # and ¢ using equations (70) and (73) and hence identify a point on one of the slowness
sheets (74). The direction of energy flux at that point is normal to the slowness surface, Musgrave (1970),
and therefore we are also able to use (74) to discriminate which of the real solutions of the eigenvalue problem
correspond to cutgoing waves at infinity,

Baving settled the question of which root of {48) provides the required wave field we are then able to proceed
to the determination of the leading order contributions to (61). The condition for a point of stationary phase
is
T A
j ko zyaz 4
0 8o

o , _
ﬁ! —-z=0, (79)

through that station. The eharacteristic value A;p can only become complex if, for a given value of a, Z
passes through a turning point of the differential equation (19). The turning points correspond to the zeros
of the discriminant of the guartic egsation (49) and it is proved in Abrahams & Wickham (1991b) that a
necessary and sufficient condition for some refracted rays to be totally internally reflected is that ¥p i8 greater
than the least zero of that discriminant. We also show that total internal reflection implies the formation of .
an infinite set of caustic surfaces. The turning rays undergo an infinite sequence of reflections and refractions
at the interface and each bundle of reflected rays envelope & caustic. These contributions to the wave field
may- be quantified by the “higher order” terms in the infinite series of integrals fepresenting (61).

The analysis outlined here has highlighted the importance of the discriminant of (49) in determining the
qualitative structure of the refracted field, It is particularly helpful in an inhomogeneous medium to chart
the locus of zeros of the discriminant in the (o, 2)-plane. We call such a graph the phase indicator; figure 2
provides an example where the grain structure is a parabolic profile and the material constants pertain to
fine-grained austenitic steel for F and coarse-grauned austenite for the weld material W, Evidently, the locus
of zeros define an open set in the (@, z)-plane given by a finite number of piecewise continuous bonndaries.
These curves delineate various regions in which the roots of (49} vary as analytic functions of o and z, and
within which the number of real roots is unchanging. For points (a,z) below the Jowest of these “modal
boundaries” as we call them, (49) has four real roots corresponding to forward {z-increasing) and backward
propagating quasi transverse and longitudinal wavea. Above the top modal boundary {labelied ¢T), all the
toots are complex, while in the region between the gL and gT curves there are generally only (wo real
Toots corresponding o quasi-transverse waves. The exceptions are in the shaded regions where the material
admits the possibility of a second pair of propagating transverse waves. This feature is discussed at length in
Abrahams & Wickham (1991b); here we focus atlention on the ¢L modal boundary. Firstly it is clear that
there are no refracted quasi-longitudinal rays for incident. rays striking the interface with an r-component of
its slowness vector greater than vpy/Easfp. This of course is the classical critical angke of refraction for the
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Figure 2: The phase indicator graph for the parabolic profile #(z) = arctan z. The material constants for this
example are &3 = 26.28Mm"?, &y = 9.7INm™2 g5 = 14.58Nm"?, &3 = 21L.6Nm—9, and Ty = 129N m=2
and correspond to coatse grained austenitic steel. The contrast parameter for compression waves is taken to
be up = 0.67; the dotted line is o = vp.
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interface problem. However, we note (hat & striking feature of the gL-modal curve is that, at a certain depth
into W, it dips below the eritical line & = vp. In Abrahams & Wickham (1991b) it is shown that whenever
this accurs then there will always be a bundle of refracted rays totally internally reflected. It follows from the

above example that this pkenomenon appears (o be relevant to the ultrasonic inspection of austenitic welds
using compression wave probes.

6. CoNCLUDING REMARKS

In this artitle we have outlined an exact analytical approach Lo the quantitative and qualitative understanding
of the refraction of ultrasound from isolropi¢ sources al the interface with a homogeneous isotropic solid and
an inhomogeneously oriented transversely anisotropic material. The problem considered is canonical in that
il focusses attention on just one-dimensional variations in the orientation of the zonal axis. This leads
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to a tractable, albeit complicated, mathematical scattering problem which we solve rigorously in the high
frequency limit. The solution has pin-pointed a useful graphical tool in the phase indicator graph, which,
in conjunction with the slowness surface for the anisotropic material, may be used to effectively predict the
qualitative structure of the refracted field. Our solutions may be used as benchmarks to compare with heuristic
numerical techniques such as that described by Ogilvy (1986) and formal ray analysis. The latter provides
the best hope for quantifying refraction through more general oriented materials and some progress to this
end will be reported in Norris & Wickham (1991). The latter uses the Gaussian beam summation method
which is fully discussed in White, Norris, Bayliss & Burridge (1987).
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