
 

Proceedings ot the Institute of Acoustics

THE REFRACTION OF ULTRASOUND IN GRAINY AND INHOMOGENEOUS FIBRE
REINFORCED MATERIALS

cs. Wickham (1) in ID. Abrahams (2)

(1) Department of Mathematics, University of Manchester, Manchester M13 9PL, UK.
(2) Department of Mathematics. University of Kcele, Keelc, Staffs 5T5 SBG, U.K.

1. INTRODUCTION

The necessity of non-destructiver inspecting cast steels, weldments, fibre reinforced materials, and other
inherently anisotropic materials has stimulated renewed interest in ultrasonic wave propagation in anisotropic
and inhomogeneous media In a recent article, Abraham 6; Wickham (1991a), the authors considered the
refraction of a horizontally polarized shear source at the “fusion interface" between an isotropic material F
and an inhomogeneous transversely isotropic solid W. The inhomogeneity in the latter was chosen to be
characteristic of the type of crystalline structures produced in austenitic steel welds. In these it is found that,
as the weld metal cools, the crystals align themselves so that an axis ofsymmetry lim parallel to the direction
of heat flow. This procws of “epitaxial growth" produces a coherent macroscopic structure characterized by
a “grain angle” who“ principal variation is with distance from the fusion interface. The authors modelled
the latter by allowing the direction 0 of the zonal axis or arcis of symmetry of the crystals to he a function of
the perpendicular distance x from the interface, see figure I. The mathematical boundary value problem was
solved exactly, and, in the high frequency, limit, a uniform asymptotic expansion for the displacement vector
was found. It was shown that in this limit, and for a wide range of material constants, the refracted energy
could experience total internal reflection in the anisotropic domain. In this paper we outline the analysis
for the much more complicated case where the displacement vector lies in the plane of propagation (two-
dimensional plane strain). We evaluate the field analytically and demonstrate a relatively simple qualitative
determination ofthe structure oIthc refracted waves. As in the SII-case we show that total internal reflection
can occur for certain grain structure and elastic moduli. Our conclusions appem to be highly significant in
the design of inspection precedures for structurally important welds.

2. FORMULATION OF THE REPRACTION PROBLEM FOR A COMPRESSIONAL SOURCE

Consider a set of local cartesian coordinates (547,5) with i= y and 5 parallel to the zonal axis at that point,
see figure 1. Relative to such a frame of reference, Hooke's law may be written in the form

fi; = Erin?“ (l)

where the fourth order tensor Em. contains five independent entries. We shall assume that the density of both
materials are constant and Em. is a constant function of position in W, i.e. all the anisotropic crystals are
elastically identical. In this case it is evident that the general stress-strain law relalive to cartesian coordinates
(z,y, :) is of the form '

fry — cijkl(a)5sl- I?)
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Figure l: The geometry of the problem showing the source position 5. the gain angle 9(x) and the grain
coordinata (2.3)

 

The orthogonal transformation describing a rotation 9 about the y—aads is given by the second order tensor

ooa9 O —sin0
nij(9)=( 0 l 0 ) (3)

ainO 0 oosfi

so that

Erin = Uip(9l“n(a)‘er(9)flh(9)¢pgn(9)y (4)
or

rpm = flp-‘(Fhlu'(9)0r-(9lfl-I(5)5mt- (5)
This last result conveniently expresses the Hooke'a tensor in terms of the orientation of the zonal axis and
hence as a function of L For completeness we display the matrix form ofeqnation (I) using the engineering
notation for strain, namely '

fit in 5n 51: 0 0 0 Eu
*2: 5|: 5" its 0 0 0 5n
“733 _ 51: Eta 5:: 0 0 0 is: (a)
‘7): _ 0 0 D ‘41 0 0 52:
m o o o o a“ o a“
in 0 0 0 D 0 Egg in

for a hexagonal material with

56: = (5n -t'u)/2 » (7)
and

5r; = (ii. i=1; Eij = 25in 5% J“ (8)

We now consider a state of plane strain in which u = («(2I z).0,w(z,z)) so that the only non~\'anishing strain
components are (n.4,, and c" in {U W. It is supposed that an isotropic timeharmonic line source is
situated at (0,:’). where z' < 0 and is reflected and refracted at the plane interface I = 0 hEchcn f and W.
Thus, if ¢(t, c). \U(z,:) are the usual Lsme' potentials for the motion in .7. we have

_ 29¢ _ Mu.- _ 8—“ + ewe—Ii, (9)
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where. for a comprasionel source of strength do,

a _ _ i .
(93 $5,)“; ; 3"“"“’ " }. (2.x) 6 r. (10)

in which

E’ = Paw/(1‘ + 211), K’ = w’a’lrn (11)
are the dimensionless comprssion and shear wnvenumbers respectively, A, u are the Lame' constants for 7and a is a typical length scale of the grain structure in W. In (IO) and all the subsequent theory, all lengthshave been Icnled on a. In the inhomogeneous material W, the general equation of motion is

B _ but 7 I _
gamma—z. + N u- — 0, (2.1) E W (12)

where

Etqu) = €iiil(9)/Eu . (l3)
and N2 = “flag/E“. Our task is to determine a aolution of(12) with (10) which satisfies the welded interfaceboundary conditions '

u(z,0+) = u(x,0'). -oo < x < on (14)
and

.u .0“ = 7h .0—
:ui:.9+i = 15.3,0‘; }‘ _°° < z < °° (15)

where 115 is the streg tensor, and represents outgoing waves at infinity. in z < 0 we have the stress-displaeement relationa in the farm

u"r.. = £ %+% MW (16)
-M“fn = 20% g — % +K’¢

while in z > 0 ‘ I on

c; m EmlWhéz- (l7)

3. FORMAL soLuTIoN or TIIE TRANSMISSION PROBLEM

We take Fourier transform of the system of partial differential equations and boundary conditions withrespect to the spatial variable 2. In particular, if

U(u,z) = f” u(:, :)zi'”‘ dz. (18)

we find that U(a,:) satisfies the ordinary differential equation

1 fl_-v ‘l'fl ‘LQ 2 _ 2 _ .and: IAa{(Q+Q )d‘+dzU}+N(I uR)U_0..>0. (19)
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where

51(5) = Eml(9(:l). (Qt-1(3) = EiaiI(9(=)). Ralf!) = 55mm”) (20)
Assuming that we can find precisely two linearly independent solutions of this equation which are source-free
in : > 0, we write the general solution for the motion in W as

mu, m') = (Id-(a. z')S'I'(ar, z) + U'T(a, r')S'T(a, z). (21)

The notation here is intended to echo the fact that. at any particular point, we expect that the displacement
field is representable as the superposition ofa “quasi-longitudinal“ and a “quasLtransverse” wave. For the
moment we proceed assuming these special functions are known and that all we need to complete the solution
is to calculate the undetermined coefficients [1" and Unit Returning to equations (10). we find that the
appropriate solutions for (0(o.:;z’), W(a,z;z‘)). the Fourier transform of da(z,:;r’) and w(:,z;z’), are of
the form

o(:.,:;:') = 0'(a,z')e"'7(') — fie'"7hll”"l, z < o (22)

W(a,:;z') = \lls(a,z')e”"(°), 2(0. (23)

where (a ET/Nzfi
7(a) = a — ,

6(a) = (u’—K7/N')‘l} (w
and we choose those branches of the square roots which have positive real part! on the Fourier inversion
contour. Substituting from (21), (22) and (23) into the Fourier transform of the boundary conditions ()4)
and (15), we obtain the transmission conditions

nw(a)w—D,~(a)s = lad—am. (25)
uTw-(u)W—T;(cr)l‘ = -'l';(—a)F°, (25)

respectively, where u = Eula.

P L N (a).'
F=(:s),w=(gzr),n=(z1a;* (21)

and the matriea D;,Dw,’l‘; and Tw are given by

mm = (713‘) if? (250'
_ - S'L(a.0) s'T(o.o)

BM“) ‘ ” ' si‘(o.o) sine») ‘29)
_ - _ 2_ 2me) = (“33:53, 3,313” ). (so)

Tw(0) = -i°Q(0ti(°)+ P(°)D'w(0) (31)

and ' as" rs"
. _ -a —:—(°v0) “ii-(MO)
Dwm‘N (15%“) gilt-ml m)

It follows that there exist unique values for W and F provided

detlva(c-)-TrtaHDth”Dw(n)] ¢ 0. (an)
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We expect that, for certain values of the elastic moduli, the left hand side of (33) will vanish for discrete
real values ofa. Such points correspond to Stoner type interfacial waves and our inversion contour must be
indented so as to ensure that these radiate to infinity.

This completes the formal determination of the undetermined coeficients; Fourier inversion now yields
, .0 .flaws) = $39“ (I — 2')? + w) + i [a ¢P(a, g'anrW” dNa. (34)

w .
\b(x_y; 1') = \Ils(a,z’)em(")'e"N"’ dNu, (35)

1' —uo

in z < 0 and

u(z, zgz') = 21—" [an [U"‘(a,z')S"’(a, z) + U'T(a.z')S'T(u, :)]e‘iN°‘ dNu. : > 0, (36)

where, as indicated earlier, the contour of inteyation is chosen so that the wave motion is outgoing at infinity.
We note that it is possible to explicitly display all the various mode conversions by writing

@P(a,:’) = doOPP(a)eN7(°)". (37)
fishy) = danS(a)lN1(a)l" (38)

U"(a,:‘) = acu’vnmnhw', (39)

end

U'T(a,z') = toU""(a)e""°"'. ’ (40)
where U”"(o) is the spectral amplitude of the quasi-longitudinal mode converted from the incident P—wave,
etc.

4. DETERMINATION or s"- AND S"

Anticipating the possibility of I‘turning points“ in the refracted field (total internal reflection), it is natural
to seek a solution of (19) using the anst

ma, z) = e‘"“°-"(F(N.c<a. :n f: " + out «a. 2)) i —""f~‘.’;" . (4n
n=n ":0 v V

where ' '
rm. 0 = Aimio. Gum) = NtAi‘Uvict I (42)

and the undetermined functions ((u, :), ((a_:). n..(t_l. :) and h,.(o. z) are all supposed slowly varying. Sub-
stituting (41) into (19) and equating coefl'icients ofN’F and N'G to zero forj = 2,1,0. —l,—2, . , , and using
Airy's differential equation - ' :

Ai”(Z) = ZAi(Z) ' (43)
yields a recursive system of difi’erential-algehraic relations for the unknown functions. To leading order we
obtain

PH"... + was. + «an - (Q + QTM-oe'no + iOCC'bul + (I - mm = o i (44)
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and - ‘

Pl—e"bo + ZK'C'Io + «M — (o + QT)[-nE'bo + iac'aol + (I — “mm = o. (45)
where the prime denotea Multiplying (44) by C" and (45) by (‘l and adding and subtracting the resulting
identities we find that

[P(A*)’ — a(Q+ QT)A* — (I — an)»: = o. (45)

where

A* = e'(a,z) a: i<*(a. :mu. 2) (47)
and

A: = c-iaao. :) 2 ciia.z)bn(o.z). (48)
A netasary and suflicient oonditon for (46) to have anon-trivial solution for AI? is

Maw)” — «(o + QT)A* — (I — em] = o, (49)

a quartic equation for the determination of A‘. Proceeding to the next order in the expansion we find similarly

that

[P(A*)‘ - um + o“):«* — (I- n’RnAf = 9*. ' (so)
when

rflmz) =—iP(A:)'A* — i(PA:A*)' + iaQ'A°* + io(Q + QT)A§

+ if?[PA€(A* + r) - a(Q + (mam (51)

and so a necessary condition for there in he a solution of (50) is that {1* is orthogonal to A§,.ie.

(fflrhf = 0- (52)

Adding (52) to the transpose of itself, using (46) and a symmetry argument yields the simple uncoupled
conservation equations -

[(Ac)’ (2% - «(Q + 07)) A51’ = 0- (53)
Now let d: be unit vectora in the direction of the leading order amplitudes A§, then the general solutions of

(53) are

A: _ e [ IF r 54)
" ""W’ I+(A*)’P.‘(0(=n«maven ' (

where

Pc<a(z))=(d:>’rd:. n:(a(:))=<d:)’nn§. (as)
We assume that, in principle at leastI the higher order amplitude coefficients in the expansion (41) may be

obtained by repeated application of the orthogonality condition.

New for reel values of a. the characteristic equation (49) can only have real roots or roots oceuring in complex
conjugate pairs. It follows that, without loas of generality, we may choose £(a,z) and ((o, :) to he real valued

functions for all real a. it “(1.2) is of one sign and bounded away from zero for all o,z then we may replace
the Airy functions by their asymptotic expansions for large argument. We find that

l
zfiNi

I
mm

U(..,:) =

 

A; exp iNx'(o.z)(l+ 0(N")). ((a. :) > 0. (56)

 

U(o,:) = (A; expiNx'(a,: — iAu+ expiNx‘(a.:)] (l + 0(N")), ((a,:) < 0. (57)
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where . '
t: exiéci no}. (53)

e z §(—c)4 c < o
On the other hand. if( changes sign as 2 varies for a given a. ire. the dilferential equation (l9) has a turning
value, then it is clear that this approximation is not uniformly valid near ( = 0. Indeed; it is readily seen
from (48) that the denominator in (54) also vanishes as ( —o 0. However, if we choose

X

.
x*(a.z) / “mm. (59),.

where z' is chosen for each value ofa so that

((rm') = 0. ' (so)
then it is clear that the coeflicients amhn remain bounded and the approximation (41) is uniformly valid
through the turning values. We conclude that it is in fact essential to choose £.( to be real for real values of
o for the latter property to hold, hirther, it is also necessary to choose x‘(a, z) to have positive imaginary
part on the Fourier inversion contour for the integrals to converge. It turns out that the latter condition is
also sufficient to ensure that the WBVE corresponding to a particular propagating mode radiate outwards at
infinity To complete the formal solution of the refraction problem we need to choose two linearly independent
solutions of(19) which we have nominally labelled S" and S". We shall describe this process for the refracted
quasi»longitudina.l wave in the following section.

5. THE naraac'ren QUASI-LONGITUDINAL wszs

The complete detailed evaluation of the refracted and reflected field for an incident compression and shear
source is given in Abraham: 5.: Wickham, (1991b). Here we outline the construction of the refracted "quasi-
compression waves" up" for the current problem; we have from (36)

w .uP~‘(z,z;z') = 52%“ / UP'L(a)S'L(a,z)cN"(")' 4"“ do, 2 > 0. (6l)-...
The structure of this integral is in fact exactly analogous to the corresponding "suit studied by the authors
(Abraham: 5: Wickham, 199la) for the case of horizontally polarised shear waves. Following the procedure
used there. it may be shown that, for a given value of (z.z), the contour of integration may be deformed
away from the turning values of the differential equation (19) so that the arguments of the Airy functions are
uniformly large over the whole of the integration range This justifies replacing (41] by the approximations
(56) and (57) as appropriate and then restoring the contour ofintegration to the whole olthe real o-axis. Over
that part ofthe integration range where ((o,:) is negative it turns out that the determinant in (83) and hence
the amplitude factor UP" is not slowly varying as N —v on! However, as in Abrahams l; \Vickham (1991a),it is possible to expand the inverse of this determinant in a power series of rapidly varying exponentials sothat the resulting expression for ur'l' is an infinite sum of classical difl’raction integrals. The first of these isof the form «so . _ I“rang” = 3/ Uranus“.:):iNe',_(o..,:;: )da' (62)

-no
where the amplitude factor U5“ varies slowly with o and the phase is given by

¢:L(a,r,:;z') = A;L(a,2)dz—i~,(a)z'—na (as)
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The integral in (62), and all the subsequent terms in the seria,_are now in a form suitable for applying Kelvin'smethod of stationary phase. However, all this assumes that we have already decidedwhich eigensolution of(46) corresponds to Ah.

If we focus attention on a particular station (2,1) in W, then the motion corresponding to (G2) is thesuperposition of Fourier contributions over a continuous spectrum of the z-component of the slowness vector.To see this, consider a neighbouring point (z + A2,: + Az) E r + Ari There, we have a contribution to theFourier integral which, to leading order in Ar, is given by

Uf"(o)AE(a,:)ei’v':'-ei”3“d‘:r"'imfl + 0(A2,A:)). (64)
where, for completeness we have included the time dependence in this exprssion. By re-writing the incrementin the phase as

Ngradé'lAr - wt = KqL(n'L.Ar — eth) = u(a.Ar — t), (65)
we are able to identify the local wavenumher, K", phase normal n", phase speed c“ and slownas vectorsaccording to

aK", = N"a’+ (A;,_) , (as)
2n“, = (—a,A.’L(a,:))/"a’ + . (67)

2,1. = UlKu. (68)

and

— P3 = (“avAvdflhlll a. (69)

respectively. The wave kinematics only depend on the local material properties, which, are constant relativeto the grain coordinates. Thus

 

(70)But. (n,A"L(o,x)) satisfies the characteristic equation (49) and so, using (70) to eliminate a and A:,_(a,z),we obtain an equation independent of 0, namely

11584-526250—535—ll+Eui:‘EZ(5u+1)-+l=0, (71)
with

co = in?” - 5i: ' 25W
(72)Equation (71) is precisely the slowness surface {or a homogeneous transversely isotropic material in planestrain with the zonal axis in the 3-direction, Musgrsve (1970), pp 96am. This quartic surface separatatrivially into two sheets, which, when expressed in polar coardinata

i. = isin w, i. = Ecosto. (73)
are given by

i_’ _ At 3915 — 48(9) (7‘)
Eu _ 25W) I

where .A is the trace of the plane-strain Hookean tensor, ie.

A = Ea+5n+2514 (75)
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and

B(1p) = 5.46“ cns‘p+Cain’pcos’lp+ Eu?“ sin" 59, (76)
with

c = 51,5“ + 5?, - 26.35... (77)The sheet corresponding to the greater phase speed is associated with the quasi-longitudinal motion. is.

1 54a 1 544 23(9)c = —_— =—“ 78(’1') P" PA— 441-433;) ( )
Thus, given a value of z and on such that equation (49) has a real solution A:L(ao,:), we may calculatethe corresponding 5 and w using equations (70) and (73) and hence identify a point on one of the slownsssheets (74). The direction ofenergy flux at that point is normal to the slowness surface, Musgravc ([970),and therefore we are also able to use (74) to discriminate which of the real solutions of the eigenvalue problemcorrapond to outgoing waves at infinity.

Having settled the quution of which root of (49) provides the required wave field we are then able to proceedto the determination of the leading order contributions to (61). The condition for a point of stationary phaseis

 

' 0A‘ a_t£ I _ =A a“ (o,Z)dZ+ m: 2 o, (79)
where Vp = h/N. Evidently, this may only have a real solution for o ifAv’L(o,z) is real over the whole of theintegration range in (79) and lfll < up. We note that the existence of a real stationary phase point at a givenstation is precisely equivalent to there being a refracted ray (in the sense of geometrical acoustics) pagingthrough that station. The characteristic value A; can only become complex if, for a given value of a, 2passes through a turning point of the diil'erential equation (19). The turning points correspond to the gemsof the discriminant of the quartic equation (49) and it is proved in Abrahams k Widtham (1991b) that anecasary and sufficient condition for some refracted rays to be totally internally reflected is that up is greaterthan the least zero a] that discriminant. We also show that total internal reflection implies the formation ofan infinite set of caustic surfaces. The turning rays undergo an infinite sequence of reflections and refractionsat the interface and each bundle of reflected rays envelope a caustic. These contributions to the wave fieldmay-be quantified by the .'higher order'I terms in the infinite series of integrals representing (61).

The analysis outlined here has highlighted the importance of the discriminant of (49) in determining thequalitative structure of the refracted field It is particularly helpful in an inhomogeneous medium to chartthe locus of zeros of the discriminant in the (o,:)-plane. “'e call such a graph the phase indicator; figure 2providm an example where the grain structure is a parabolic profile and the material constants pertain tofine-grained austenitic steel for f and coarse—grained austenite for the weld material W. Evidently, the locusof zeros define an open set in the (a,z)«plane given by a finite number of piecewise continuous boundaries.These curva delineate various regions in which the roots of (49) vary as analytic functions ofo and z, andwithin which the number of real roots is unchanging. For points (mz) below the lowest of these “modalboundaries” as we call them, (49) has four real roots corresponding to forward (:-increasing) and backwardpropagating quasi transverseand longitudinal wave. Above the top modal boundary (labelled qT), all theroots are complex, while in the region between the qL and qT curves there are generally only two realroots corresponding to quasitransverse waves. The exceptions are in the shaded regions where the materialadmits the possibility ofa second pair of propagating transverse waves. This feature is discussed at length inAbraham 5: Wickham (1991b); here we focus attention on the qL modal boundary. Firstly it is clear thatthere are no refracted quasi-longitudinal rays for incident rays striking the interface with an x-component ofits slownar Vector greater than Vp"Eqa/p. This of course is the classical critical angle of refraction for the
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Figure 2: The phase indicator graph for the parabolic profile 0(:) = arctan z. The material constants for thisexample are E“ = 26.28Nm". En = 9.73Nm". 6,3 = 14.5N'm'2‘ 5;; = 21‘6Nm‘7, and E“ = l2r9Nm"and corrapond to coarse grained austenitic steel. The contrast parameter for oompresion waves 'u taken tobe up = 0.67; the dotted line is a = 11;.

0.00 2.00 4.00 5.00 3.00 10,00
2 (m m

interface problem. However, we note that a striking feature of the qL-modal curve is that, at a certain depthinto W. it dips below the critical line a = Vp. In Abraham 8: Wickham (1991b) it is shown that wheneverthis occurs then there will always be a bundle of refracted rays totally internally reflected. It follows from theabove example that this phenomenon appear: to be relevant to the ultrasonic inspection of austenitic weldsusing compression wave probes.

6. Concwnma umms

In this article we have outlined an exact analytical approach to the quantitative and qualitative understandingof the refraction ofultrasound from isotropic sources at the interface with a homogeneous isotropic solid andan inhomogeneously oriented transversely anisotropic material. The problem considered is canonical in thatit focussea attention on just one-dimensional variations in the orientation of the tonal axis Thisleads 1M Proc.l.0.A. Vol 13 Pan 2 (1991)
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to a tractable, albeit complicated, mathematical scattering problem which we solve rigorously in the high
frequency limit. The solution has pin-pointed a useful graphical tool in the phase indicator graph, which,
in conjunction with the slownefi surface for the anisotropic material, may be used to effectively predict the
qualitative structure ofthe refracted field. Our solutions may he used as benchmarks to compare with heuristic
numerical techniques such as that described by Ogilvy (1985) and formal ray analysis. The latter provides
the hat hope for quantifying refraction through more general oriented materials and some progress to this
end will he reported in Norris 6t Wickham (1991). The latter uses the Gaussian beam summation method
which is fully discussed in White, Norris, Baylis h Burridge (1987).
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