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The finite element method has previously been used extensively to model the
structure of the vielin and guitar {1]. These models ineluded only the
structure of the body and effectively gave the natural modes in a vacuum,

Experimental Iinvestigations reported by several authors have shown that the
vibrations of the internal air cavities of violins and guitars have an
important effect on the behaviour of the complete instrument.

The governing linearised equation for pressure in a fluid is.the wave equation

1 at

where ¢ is the sound velocity {(given by c? = B/p, where B is the adiabatiec bulk
modulus and p is the density),

For an elgenvalue analysis, p = p91Wt iy substituted into the wave equaﬁion and
this gives the Helmholtz equation

‘ o?
v‘pi-—’-p = 0.

c .

The boundary conditions are

%E =0 at a rigid boundary,

p=20 at a free boundary.
Consider a rectangular cavity of dimensions Lx' Ly. Lz with rigid walls. The

wave equation may be solved by separation of variables to givelthe result that
the standing wave 13 comprised¢ of cosines
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with
ir Jr ken
k;, = —, k, = . k, = —.
k
Lx Ly Lz

The natural frequencies are given by

-clzla
fijk H 51 ki + kj + kk

It is impossible to obtain analytical soluticns of the wave equation for
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general boundaries as found on musical instruments. The finite element was
therefore used to calculate the internal air modes of cavities of varlous
shapes. This work was a purely acouatical model and assumed rigld cavity walls.
The material properties used for air were

¢ = W™, P o= 1.27kem o,

Using the normal finite element approximations [2], the problem reduces to
((s1 - w’[MD{p} = o,

where {p} are the pressure amplitudes at the grid points, and [S] and [M] are
the acoustlc stiffness and mass matrices. ‘

. 2
The natural boundary conditicn at a rigid boundary, ol 0, is satisfied by not
on .

specifying any boundary condition at the finite element grid points. The
computation and graphlcal cutput was performed on a GEC 4090 minicomputer.,

To check the accuracy of the finite element program, a rectangular cavity was
modelled and results compaed with the exact analytical results presented
earlier. Tahle 1 gives the two setz of results for a shallow cavity measuring
0.35 x 0.16 x 0.04m (which is about the same slze as a violin). The comparison
i3 very close for all the modes modelled.

A violln=-shaped oavity was then analysed. Tﬁe mesh comprised of three-
dimensional acoustic elements having corner modes and single mid-side nodes and
is shown 1n Figure 1,

Figur= 2 shows the predicted modes in the form of contour plots of the pressure
distribiutiou at the top plate, These are in close agreement with experimental
results obtained by Jansson [3] and a comparison of frequencles is given in
Tablc 2. The computed results showed that, for the frequency range considered,
the mogdes wer: two-dimensinal in nature, with the same pressure distribution
occuring throughout the thickness of the cavity.

In order to assess the effect of the f-loles on the internal alr modes, the
f-holes were approximated by speclfying a boundary condition of zero pressure
along a line in the finite element mesah lying along the f=hole positions (shown
dark in Flgure 1). The resulting modes are shown in Figure 3 and a comparison
of frequencies with those obtained by Janssen 13 given in Table 3. Here the
agreement i= not as close as for the sealed cavity. The most accurate
prediciions are for modes 1 and 5 which would in any case have pressure nodal
lines in the vicinity of the f-holes. All the modes obtalned were agaln
essentlally two-dimensional in character, although there was some perturbation
in the pressure field near the top plate in the region of the f-<holes,

With open f-holes, & new mode 13 obtained which approximates to a Helmholtz
resonance. The finite element method does predict a new resonence, but its
frequency is higher than that obtained experimentally. Thils inaccuracy is not
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surprising since no mass loading or radiation impedance is modelled and this
also causes loss of accuraey for several of the higher modea,

A guitar-shaped cavity was also modelled and the predicted modes are shown in
Figure 4. Jansson also measured the modes of a guitar cavity, but hia was a
half-scale model. To compare with the present results, his experlmental
frequencles have been halved and the resulting close compariscn is given in
Table 4. The finite element model prediets.an air mode (mode 4) which was not
obtained experimentally; it is probably difficult Lo cxcite because its
frequency is so near to that of mode 3., Again the modes are two-dimensional in
the frequency rarnge modelled,

Finally, the guitar cavity was modelled with a zero pressure boundary condition
at the locatlon of the soundhole. This gave the modea shown in Figure 5 and the
frequencies are cowpared with Jangson's experimental results in Table 5, The
same comments apply for these as for the open violin-shaped cavity. For
symmetric modes, the pressure distribution at the top plate was affected
considerably by the open soundhole, although the modes were still easily
recognisable, The pressure distribution at the back plate was hardly changed
from the realed case, For antisymmetric modes, a nodal line passes through the
spundhole ceatre in any case, so foreing zero pressure at the soundhole did not
cause much change. s '

The next stage would be to allow coupling between the acoustic and structural
motions, It {s possible to form a coupling matrix which defines the connection
between the acoustic and structural elements at the fluid-solid interface, thus
cambining the model presented here with that given in [1]. Unfortunately,
complications arise because the acoustic model is inaccurate unless all the
degrees of freedom are retained, This makes the combined model very large 8s
.the usual methods for obtaining an efficlent sclution to the structural motion
cannot, be utilised.
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TABLES

Table 1 Compariscon of analytic and
finite element results for the natural
frequenciea of a shallow rectangular
cavity of dimensions

0.16m x 0,35m x 0.04m,

Mode Exact Finite element

1,k,1

0,1,0 490 490
0,2,0 980 980
1,0,0 1072 1072
1.1, 1173y 1179
1,2,0 1452 1453
0,3,0 1470 1472

Table 2 {omparison of exper-'imental {1] Table 4 Comparison of experimental [1]
and finite element results for a rigid and finite element results for a rigid
violin-shaped cavity. guitar-shaped cavity.

Mode Experimental Finite element Mode Experimental Finite element

1 u75 ua31 1 372 370
2 1050 1049 2 540 568
3 1110 1078 3 760 765
4 1290 1309 4 - 765
5 1570 1523 5 980 1012
6 1770 1773 ] 1000 1039
T 1800 1809

- Table § Comparison of experimental [1]
and finite element results for a rigid
Table 3 Comparison of experimental [1] gyjtar-shaped cavity with a zero-pressure
and finite element results for a rigid ppundary condition at the soundhole,
violin-ahaped cavity with @ zero-pressure
boundary corndition at the f-hules.

Mode Experimental Finite element

Mode  Experimental Finlte element 0 121 199
1 395 161
0 290 432 2 s45 - oT2
1 500 550 3 770 785
2 1090 112% : u . - 788
3 1190 1334 1] 985 103
] 1290 1318 [} 1045 1039
5 1610 1609
6 - 2006
T 1910 1829

134
Proc.l.0.A. Vol 9 Part 3 {1987)




Proceedings of The Institute of Acoustics
MODELLING AIR-CAVITY MODES OF STRINGED INSTRUMENTS

FIGURES

Figure 1 Mesh of a violin-shaped cavity which comprises of 20-
noded hexahedral and i5-noded pentahedral acoustic elements.
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Finite element mode shapes for the pressure

Figure 2
distribution within = vlolin-shaped cavity.
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Flgure 3 Finite element mode shapes for the pressure

distribution within a violin-shaped cavity with a zero-pressure
boundary condition at the f-holes.
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1011.8 Hz

Figure 4 ' Finite element mode shapes for the pressure
distribution within a guitar-shaped cavity,

198.7 Hz ' 481.0 Hz 787.5 Hr

1031.% Hz . 1039.5 Mz

‘Figure S Finite element mode shapes for the pressure
distribution within a guitar-shaped cavity with a zero-pressure
boundary condition at the soundhole.
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