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The finite element method_has previously been used extensively to model the
structure of the violin and guitar [1]. These models included only the
structure of the body and effectively gave the natural modes in a vacuum.

Experimental investigations reported by several authors'have shown that the
vibrations of the internal air cavities of violins and guitars have an
important effect on the behaviour of the complete instrument.

The governing linearised equation for pressure in a fluid is the wave equation

I 3'

uhere c is the sound velocity (given by c‘ : B/p, where B is the adiabatic bulk
modulus and p is the density).

For an eigenvalue analysis, p = peiwt is substituted into the wave equation and
this gives the Helmholtz equation

“I

V'p+ —‘p = 0.
c

The boundary conditions are

32-0- at a rigid boundary,
in

p = 0 at a free boundary.

Consider a rectangular cavity of dimensions LR, Ly. Lz with rigid Halls. The

wave equation may be solved by separation of variables to give the result that
the standing wave is comprised of cosine:

Pijk : Aijk cosk‘x coska coskkz,

with

k =61, k-“—'in= _ ki v
. Lx J y z

The natural frequencies are given by

f = cl: 1 aUk Elk‘okJ‘kk

It is impossible to obtain analytical solutions of the wave equation for
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general boundaries as found on musical instruments. The finite element was

therefore used to calculate the internal air modes of cavities of various

shapes. This work was a purely acoustical model and assumed rigid cavity walls.

The material properties used for air were

3
e = alarms". D 1.21kgm-

Using the normal finite element approximations [2], the problem reduces to

([51- u-‘nmm :0,

where (p) are the pressure amplitudes at the grid points. and [S] and [H] are

the acoustic stiffness and mass matrices. ‘

- 3
The natural boundary condition at a rigid boundary. 3% = O. is satisfied by not

specifying any boundary condition at the finite element grid points. The

computation and graphical output was performed on a GEC M090 minicomputer.

To check the accuracy of the finite element program, a rectangular cavity was

modelled and results compaed with the exact analytical results presented

earlier. Table 1 gives the two sets of results for a shallow cavity measuring

0.35 x 0.16 x 0.0Hm (which is about the same size asa violin). The comparison

is very close for all the modes modelled.

A violin-shaped osvity was then analysed. The mesh comprised of three-

dimensional acoustic elements having corner modes and single mid—side nodes and

is shown in Figure I.

Figure 2 shows the predicted modes in the form of contour plots of the pressure

distribution at the top plate. These are in close agreement with experimental

results obtained by Jansson [3] and a comparison of frequencies is given in

Table 2. The computed results showed that, for the frequency range considered,

the modes were two-dimensinal in nature' with the same pressure distribution

occuring throughout the thickness of the cavity.

In order to assess the effect of the f—holes on the internal air modes, the

f-holes were approximated by specifying a boundary condition of zero pressure

along a line in the finite element mesh lying along the f-hole positions (shown

dark in Figure 1). The resulting modes are shown in Figure 3 and a comparison

of frequencies with those obtained by Jansson is given in Table 3. Here the

agreement is not as close as for the sealed cavity. The most accurate

predictions are for modes 1 and 5 which would in any case have pressure nodal

lines in the vicinity of the f-holes. All the modes obtained were again

essentially two-dimensional in character, although there was some perturbation

in the pressure field near the top plate in the region of the f-holes.

Hith open f-holes, a new mode is attained which approximates to a Helmholtz

resonance. The finite element method does predict a new resonance, but its

frequency is higher than that obtained experimentally. This inaccuracy is not
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surprising since no mass loading or radiation impedance is modelled and this
also causes loss of accuracy for several of the higher modes.

A guitar-shaped cavity wasalso modelled and the predicted modes are shown in
Figure ll. Jansson also measured the modes of a guitar cavity, but hiswas a
half—scale model. To compare with the present results, his experimental
frequencies have been halved and the resulting close comparison is given in
Table ‘5. The finite element model predicts an air mode (mode ‘0) which was not
obtained experimentally; it is probably difficult to ezcite because its
frequency is so near to that of mode 3. ,Again the modes are two-dimensional in
the frequency range modelled.

Finally. the guitar cavity was modelled with a zero pressure boundary condition
at the location of the soundhole. This_gave the modes' shown in Figure 5 and the
frequencies are compared with Jansson's experimental results in Table 5. The
same comments apply for these as for the open violin-shaped cavity. For
symmetric modes. the pressure distribution at the top plate was affected
considerably by the open soundhole. although the modes were still easily
recognisable. The pressure distribution at the back plate was hardly changed
from the sealed case. For antisymetric modes. a nodal line passes through the
soundhole centre in any case, so forcing zero pressure at the soundhole did not
cause much change. '

The next stage would be to allow coupling between the acoustic and structural
motions. It is possible to form a coupling matrix _which defines the connection
between the acoustic and structural elements at the fluid-solid interface, thus
combiningvthe model presented here with that given in [1]. Unfortunately,
complications arise because the acoustic model is inaccurate unless all the
degrees of freedom are retained. This makes the combined model very large as
_the usual methods for obtaining an efficient solution to the structural motion
cannot be utilised. '
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TABLES

Table 1 Comparison of analytic and

finite element results for the natural
frequencies of a shallow rectangular
cavity of dimensions

0.16m x 0.35m x 0.0"!!1.

Node Exact Finite element

 

i,k,1

0.1.0 ago I190
0.2.0 980 980
1,0.0 1072 1012
1.1.0 1179 1119
1.2.0 1u52 1153
0.3.0 1-170 11:12

Table 2 Comparison of experxmengal [1] Table u Comparison of experimental [1]

and finite element results for a rigid and “"1" 919"?“ refill" for 3 “81¢
violin-shaped cavity. “Raf-imp“ CEVHY-

Mode Experimental Finite element

    

1 l‘75 l151 1 372 370
2 1050 10119 2 5” 553
3 1110 1078 3 750 755
a 1290 1309 ‘i - 765
5 1570 1523 5 98° ""26 1170 1773 6 1000 1039
7 1900 1509 -“——“'——-‘———‘

——-—-~—--—-——————--—---—-—— Table 5 comparison of experimental [1]
and finite element results for a rigid

Table 3 Comparison of experimental I” guitar-shaped cavity am. a zero-pressure
and finite element results for a MS“ boundary condition at the aaundhole.
violin-shaped cavity with a zero-pressure

boundary condition at the fancies. -

   

Node Experimental Finite element

        

Hode Experimental Finite element 0 I21 199

--——-—-———-—--- —-—-—-———-- 395 I161
0 290 “32 2 5‘5 572
1 500 550 3 770 785
2 1090 1 125 ' u - 788
3 H90 133“ 5 965 1031

'1 1290 1315 6 1005 1039
5 1610 1609 _.---___.-..—_

6 - 2006
1 1910 1829
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FIGURES

 

Figure 1 flash of a violin-shaped cavity uhlch comprises of 20-
noded he'xahedral and ZS-noded pentahedral acoustic elements.
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ISZJJ Hx  
Figure 2 Finite element mode shapes for the pressure

distribution within 2. violin-shaped cavity.
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Figure 3 Finite element mode shapes for the pressure

diatribuuon within a violin-shaped cavity with a zero-pressure

boundary condition at the f—holea.
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Figure 1‘ mm element mode shapes for the pressure
distribution within a guitar-shaped cavity.
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Figure 5 Finite element mode shape: for the pressure
distribution within a guitar-shaped'cavity with a zero-pressure
boundary condition at the soundhole.
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