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1. Introduction

In recent years, workers in musical acoustics have recognised the possibilities
of using finite element analysis to predict the modal properties of structures
found on musical instrunents. The first to appear uas a short study of a
guitar top by Schuab [‘l] and a more detailed study was given last year by
Richardson 3. Roberts [2]. The method has also been used to analyse church

bells [3] and trombone bells [1%].

This paper reports on progress in applying the method to analyse violin plates.

2. mtline of the Finite Element Method

The finite element method is based on the knouledge that most sets of

differential equations may he expressed as a corresponding variational
principle. The most widely-read text on the finite element method is that by

Zienkieu-icz [5]. In the present problem it is necessary to solve the shell

eigen-equations for a spruce or maple violin plate. Furthermore, these

equations must be solved for each case of different shell geometry and boundary

conditions.

The shell is divided into general quadrilaterals or triangles called 'finite

elements' and the structural geometry is defined in terms of 'nodal points' or

'nodes' which are situated at the corners and mid-points of the element sides.

".5. There is an unfortunate clash of terminology between this use of 'node‘ and

the usual meaning given to it in vibrational analysis (i.e. points of zero

displacement.)

By assuming appropriate 'shape functions' for each element, the problen is

reduced to a finite—dimensional eigen—problem. me unknowns in the equations

are the eigen—frequencies and the relative displacements at the nodal points

which give the mode shapes.

We have thus to solve:

[Kllal = Milllal

mere [K] is the stiffness matrix. [M] is the mass matrix and (a) the vector of

nodal displacements.  
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The formation and solution of this equation is left to the computer. The
formulation of the finite element method is ideally suited to modern computers
as the various matrices may be built up an elment at a time. so that
essentially the sane set of calculations are repeated for each elznent.

 

The results in this paper were obtained using a commercial finite element
package called ASAS. This was supplied by Atkins Research and Development [6]
and mounted on the SERC mainfrane cmputers at Rutherford Appleton Laboratories

(RAL) near cuford. nata preparation and post-processing of results were
carried out on the local SERC GEC‘JOQO Hulti-User-Hini.

3. Onjectives of Analysis

This was a theoretical study. lb attznpt was made to perform a parallel

esperimental study and to match dimensions and material properties so as to

compare closely the agreement between theory and experiment. Sich a

comparative study was previously undertaken for the guitar with some success
[2]. However, this latter paper does outline some difficulties experienced
with the ASAS code for accurate modelling of struts. The aim in the present

study was to produce a general overview of the modal characteristics of violin

plates modelled to be in various stages of construction. The results can be
viewed in a general context and compared with holographic and acoustical

experiments already published by other authors.

The plate dimensions were taken from Sacconi [1] and the finite elenent mesh for
the top-plate is shown in Fig.1. This has been refined in several strategic
places around the f—holes and at the corners so as not to overtly offend any
luthiersl As can be seen. the mesh has been designed so that the positions of

the element boundaries enable approximate modelling of the bass-bar and any

attachment or boundary conditions at the blocks and at the soundpost.

The solution method utilised by ASAS would not allow the structure to be
'free—fi‘ee' , so modelling of the free plate modes required the restraint of the
four bean elenents shown in Fig.1. These were optimised to be as slack as
possible so as to minimise the rigid-body mode frequencies. (the starting
criteria were the elastic constants for rubber.) 'Ilith this proviso.

investigation showed that they had a negligible effect on the results for the
true plate modes. (Essentially they were elastic bands.)

For the purposes ofthis study, the modelling of a violin top-plate in its
stages of construction was split into three parts:-

(a) arched spruce top-plate. without f-holes, without bass-bar

(b) with f-holes. without bass-bar

(c) with f—hcles and bass-bar

At each stage the effect of changing various paraneters was studied. The plate
thickness was varied from 2m to 10mm and the zuount of arching was modelled from
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3 completely flat plate to one with double Sacconi‘srecommended arching. At
stage (c) the bass-bar was first modelled rough (6mm x Hmm). then shaped down
('tuned') to Sacconi's dimensionsI then cut down further to a quarter of the
recommended height. For the finished plate, clasped and hinged boundary

cond itions were incorporated .

For the maple back. different. thicknesses and arching were modelled, and free,

clamped and hinged boundary conditions studied.

The material properties for spruce and maple were taken l‘ron Haineo [S].

u. Discussion of Results

14.1 Free plate modes

As an exznple of the finite element output. Fig. 2 shows a View of the 'ring'

mode in the finished top-plate. More information may be obtained by studying
‘contour diagrams of the mode shapes.

Figs. 4 and 5 show the mode shapes of the finished violin plates. For
comparison. Fig. 3 shows a flat top-plate with neither f—holes nor bass-bar.

These diagrams may be compared directly with experimental results obtained using

holographic techniques [9] [10].

Table 1 shows the changes in modal frequencies as the top-plate is theoretically

manufactured.

mere is usually a direct correspondence between modes in the flat and arched

plates. file flat top-plate mode which is most affected by the arching is the

second one union. by analogy with the ‘beam' modes of a square plate, may be
designated (0,2). as the arching height is increased, its frequency is raised
considerably and its shape transformed to become what is commonly called the

ring-mode. The forming of the back—plate ring-mode is similar. but in this
case it is the third mode (similar to a (2.0) bean mode) of the flat back-plate
that is transformed.

The effect on a finished top-plate of changing only the arching height is given

in Table 2, and Table 3 shows the effect of changing only its thickness.

Tables It and 5 give the corresponding frequency changes for the maple

back-plate.

The most obvious effect of adding the bass-bar is to destroy modal symmetry and
to increase the natural frequencies. Indeed. with a rough bass—bar (6m x
11mm). the ring-mode almost reverts to a (0.2) mode shape. By shaping
('.tunina') the bass—bar. frequencies are lowered. much synmetry is regained and
the ring-mode becomes rounded once againh

9]  
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“.2 Hinged Plate lbdes

Figs. 6 and 1 show the modes of the finished top and back plates with hinged

boundary conditions imposed at the edges and at the blocks. These may again be

compared directly with experimental results obtained by other authors [11] [12].

It was found that the best model of the boundary conditions on an arched plate

mounted on a completed instrument Has obtained by imposing a hinged boundary

condition. This was different fresh the corresponding results for the guitar

[2] which was best modelled with a clamped edge.

Comparison of the top and back plate modes shows that the bass-bar tended to

increase the vibrational a-npiitude in the upper-left part of the plate.

The maximum displacements of several of the top-plate modes occurred near the

top of one of the f-holes. This was observed experimentally by Jansson et a].

[H] and suggests that the position of the f—holes and the thickness of the wood

in the' immediate area may have important effects on the canplete instrunent's

behaviour. (This is. of course, in addition to their effects on the air

modes.)

5. conclusion

The general validity of the finite element method for the analysis of violin

plates has been shown by the good agreement between the theoretical results

given in this paper and those obtained by holographios and acoustical

experiments by other authors [9](10][11][|2].

The predictions of a finite elanent analysis can be invaluable as a guide for

the experimental acoustician. The theoretical mode shapes can suggest the best

positions for both the vibration drivers and supports. and combination modes may

more easily be recognised and removed.

Finite element analysis is currently the only way to study the effect of a

controlled change of paraneters such as arching.

mrrently the size limitations of ASAS as implenented at RAL have been reached,

but other packages are under investigation and work is proceeding on a model

analysis of a complete violin body.
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Table 1 Frequencies of firee arched Table 2 Effect of arching on he-

bop-plate at different stages. 1118 quencies of free arched top-plate.

modes are ordered as in Fig.9. The modes are ordered as in Fig.9.

Made (a) . (b) (c) (c) Made flat quarter normal double
rmgh shaped

76.1 78.5 99.1 110.9
116.5 123.2 153.9 189.2
191.7 201.9 255.7 301.3
219.5 219.2 271.7 335.6
137.9 159.0 327.8 982.5

262.8 279.1 389.5 579-3
397.9 359.5 997.1 985.7

390.7 393.9. 950.0 573.9
1127.7 937.1 559.2 602.0
957.6 966.1 576.9 712.7

88.8 81.1 132.3 99.7
159.7 195.8 159.8 153.9
259.7 292.7 281.9 255.7
269.9 251.9 298.9 271.7

363. 3 320.5 399.8 327.8

388.0 366.2 920. 3 389.5
967.2 937.9 955.0 997.1
1165.3 991.0 979.3 950.0
608.7 597.2 573.2 559.2
595.3 559.9 612.6 576.9

o
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o
m
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m
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w
o
q
o
m
s
z
-
c

_Table 3 Effect of thickness on fre— Table 9 Effect. of arching on fre-

quencies of free arched top-plate. quencies or tree arched back-plate.

The modes are ordered as in Fig.9. The modes are ordered as in Fig.5.

Mode 9mm 3mm 2mm Mode flab quarter normal double

109.9 99.7 80.2 86.7 103.7 128.2 159.7

189.7 153.9 122.9 93.3 139.2 189.9 219.0

308.3 255.7 201.3 298.7 279.2 288.2 357.3

322.5 271.7 213.5 236.9 258.8 311.9 390.1

352.9 327.8 295.0 151.9 189.2 358.7 515.0
997.8 389.5 313.2 359.7 386.6 958.8 573.9

530.6 997.1 359-9 983.2 539.6 552.6 673.8

595.1 950.0 362.1 995.0 990.1 576.6 796.7

669.9 559.2 995.2 575.9 639. 3 695.9 867.9
692.5 576.9 969.0

1
2

3
u
5
6
7
B
9
0

Table 5 Effect of thickness on fre-
quencies of free arched back-plate.

The modes are ordered as in Fig.5.

Mode 9mm sacconl 3mm 2mm

128.2 111.0 85.3
189.9 163.9 120.0

283.2 270.9 205. 8

311.9 295.9 227.9

358.7 390.2 290.9
958.8 938.7 390.6

552.6 519.7 399.9
576.6 592.8 927.1
695.9 629.6 509.0
750.5 701.2 591.1 
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      130.0 N1. 191.7 Hz.

Figure 3 Free. flat top-plate, h =

  

I533 Hz. 2557’ Hz. 17L" H1. 3273 HI.

Figure It Free, finished arched top-plate. h=3mm.
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123.2 Hz. ‘84.! Hz. 286.! H24 31L4 Hz. JSBJ ML

Figure 5 Free. finished arched back-plate. h varying.

  54L!) Hz. 6H4 H1. 615.9 h'z,

Figure 5 Hinged top—plate.

   

JDZJ Hz. 701.5 P1. 7-303 P2. 1005.? '12. 1236.6 Fly

Figure 7 Hinged back-plate.


