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1. Introduction

In recent years, workers in musical acousktics have recognised the possibilities
of using finite element analysis to predict the modal properties of structures
found on musical instruments, The first to appear was a short study of a
guita: top by Schwab [1] and a more detailed study was given last year by
Richardson & Roberts [2]. The method has also been used to analyse church
bells [3] and trombone bells [4].

This paper reports on progress in applying the method to analyse violin platesL

2. Qutline of the Finite Element Method

The f{inite element method is basad on the knowledge that most sets of
differential equations may be expressed as a corresponding variational
principle, The most widely-read text on the finite element method 1s that by
Zienkiewicz [5]. In the present problem it is necessary to solve the shell
aigen-equations for a spruce or maple vielin plate, Furthermere, these
equations must be solved for each case of different shell geametry and boundary
conditions.

The shell is divided into general quadrilaterals or triangles called 'finite
elements' and the structural geometry is defined in terams of 'nodal points' or
'nodes' which are situated at the corners and mid-points of the element sides.
N.B. There is an unfortunate clash of ternminology between this use of 'node' and
the usual meaninz given to it in vibrational analysis (i.e. peints of zero
displacement.)

By assuming appropriate 'shape functions' for each element, the problem is
reduzed to a finite-dimensional elgen-problem, The unknowns in the equations

are the eigen-frequazncies and the relative displacements at the nodal points
which give the wode shapes.

We have thus to solve:
(x)lal = X[M){al

where [X] is the stiffness matrix, [M] is the mass matrix and {a} the vector of
nodal displacements,
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The formation and solution of this equation is left to the computer. The
fornulation of the finite element method 1is ideally sulted t> wodern computers
as the various matrices may be built up an element at a time, so that
essentially the same set of calculations are repeated for each element,

The results in this paper were cbtained using a commercial finite element
package called ASAS, This was supplied by Atkins Research and Development [6]
and mounted on the SERC mainframe computers at Rutherford Appleton Laboratories
(RAL) near Oxford. Data preparation and post-processing of results were
carried out on the local SERC GEC4090 Multi-User-Mini.

3. bjectives of Analysis

This was a thecretical atudy, Ho attempt was made to perform a parallel
experimental study and to match dimensions and material properties so as to
ecompare closely the agreement between theory and experiment, Such a
comparative study was previously undertaken for the guitar with some success
[21. However, this latter paper does outline some difficulties experienced
with the ASAS code for accurate modelling of struts, The aim in the present
study was to produce a general overview of the modal characteristics of violin
plates modelled to be in varlous stages of construction. The results can be
viewsd in a general context and compared with holographic and acoustical
experiments already published by other authors.

The plate dimensions were taken from Sacconi {7] and the finite element mesh for
the top-plate is shown in Fiz.1. This has been refined in several strategic
places around the f-holes and at the corners so as not to overtly offend any
luthiers! As can be seen, the mesh has been designed 3o that the pesitions of
the element bhoundaries enable approximate modelling of the bass-bar and any
attachment or boundary conditions at the blocks and at the soundpost.

The solutlion method utilised by ASAS would not allow the structure to be
*free-free', so modelling of the free plate modes required the restraint of the
four bean elements shown in Fig.t. Thesa were optimised to be as slack as
pasalble 50 as to mimimise the rigid-bedy mede frequencies, {the starting
criteria were the elastic constants for rubber.) #ith this proviso,
invastization showsd that they had a neglizible effact on the results for the
true plate modes, (Essentially they were elastic bands,)

For the purposss of this study, the modelling of a vielin top-plate in its
stagzes of construction was split into three parts:-

(a) arched spruce top-plate, without f=holes, without bass-bar
{b) with f-holes, without bass-bar
{¢) with f-holes and bass-bar

At each stage the effect of changing various parameters was st.udied-. The plate
thickness was varied from 2mo to Ymm and the znount of arching was modelled from
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a completely flat plate to one with double Sacconi's recommended arching. At
stage {c) the bass-bar was first modelled rough (6mm x 1tmm), then shaped down
{'tuned') to Sacconi's dimensions, then cut down further to a quarter of the
recommended height, For the finished plate, clamped and hinged boundary
conditions were incorporated.

For the maple back, different thicknesses and arching were modelled, and free,
clamped and hinged boundary conditions studied.

The material properties for spruce and maple were taken from Haines [3].

g, Discussion of Results
4.1 Free plate modes

43 an exanple of the finite element output, Fig. 2 shows a view of the 'ring’
mode in the finished top-plate. More information may be obtained by studying
~contour diagrams of the mede shapes. . :

Figs. 4 and 5 show the mode shapes of the finished violin plates, For
comparison, Fig. 3 shows a flat top-plate with neither f-holes nor bass-bar.
These diagrams may be compared directly with experimental results obtained using
holographic techniques [9]1 (10].

Table 1 shows the changes in modal frequencies as the top-plate i3 theoretically
manufactured,

There is usually a direct correspondence between modes In the flat and arched
plates, The flat top-plate mode which i3 most affected by the arching is the
second one which, by analoZzy with the 'bean' modes of a square plate, may be
designated {0,2), As the arching height is increased, its frequency is raised
considerably and its shape transformed to become what is commonly called the
ring-mode. The Torming of the back-plate ring-mode is similar, but in this
case it is the third mode (similar to a {(2,0) bean mode) of the flat back-plate
that is transformed.

The effect on a finished top-plate of changing only the arching heig,_ht is given
in Table 2, and Table 3 shows the effect of changing only its thickness.

Tables 4 and 5 give the corresponding frequency changes for the maple
back-plate,

The most obvious effect of adding the bass-bar 1s to destroy modal symmetry and
to inerease the natural frequencles. Indeed, with a rough bass-bar (5mm x
1tmm) , the ring-mode almost reverts to a (0,2) wmede shape, By shaping
{"tuning') the bass-bar, frequencies are lowered, much symmetry is regained and
the ring-mode becomes rounded once again..
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4,2 Hinged Plate Modes.

Figs. 6 and T show the modes of the finished top and back plates with hinged
boundary conditions imposed at the edges and at the blocks. These may agaln be
compared directly with experimental results obtained by other authors [11] (12},

It was found that the best model of the boundary conditlons on an arched plate
mounted on a completed instrument was obtained by imposing a hinzed boundary
condition, This was different fram the corresponding results for the guitar
2] which was best modelled with a clamped edge.

Comparison of the top and back plate modes shows that the bass-bar tended to
increase the vibrational applitude in the upper-left part of the plate,

The maximum displacements of several of the top-plate modes oceurred near the

- top of one of the f-holes. This was observed experimentally by Jansson et al
[11] and suggests that the position of the f-holes and the thickness of the wood
in the immediate area may have important effects on the complete instrument's
behaviour. (This is, of course, in addition to thelr effects on the air
modes,}

5. Conelusion

The general validity of the finite element method for the analysis of violin
plates has been shown by the good agreement between the thecretical results
given in this paper and those obtained by holographiecs and acoustical
experiments by other authors [9]0101[11]{v2].

The predictions of a finite element analysis can be invaluable as a guide for
the experimental acousticlan, The theoretical mode shapes can sugzest the best
positions for both the vibration drivers and supports, and combination modes may
more easily be recognised and removed,

Finite element analysis is currently the only way to study the effect of 2
controlled change of paraneters such as arching.

Currently the size limitations of ASAS as implemented at RAL have been reached,
but other packages are under investigation and wark 1s proceeding on a modal
analysis of a complete violin body,
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Table 1 Frequencies of free arched Table 2 Effect of arching on fre-
top-plate at different stages. The quencies of free arched top-plate,
modes are ordered as in Fiz.d. The modes are ordered as inm Fig.d.

Mode (a) . [£:)] {c} (e) Mode flat quarter normal double
rough shaped
76.1 78.8 Qu.v 110.9
116.5 123.2  153.9  184.2
191.7 201,48 255.7 301.3
214.,5 219.2 271. 335.6
137.4 154.0 327. 4§2.%
262.8 274.1 389. 579.3
347.9 Ish.5 but. 4857
393.7 393.9. us0. 573.4
427.7  437.1  §59. 602.0
457.6 U66.1 575, T12.7

88.8 811 132.3  9u,7
54,7 145.8  169.8 153.9
259.7 242.7 281.4 255.7
269.4 251.8° 298.4 271.T°
363.3  320.5 349.8  327.8
388.0 366.2 420.3  389.5
u67.2  437.4  455.0  HET.1
3 4581,0 4Ta .3 §50.0
7 547.2 573,2 559.2
3 559.9 612.6 575.9

—
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Table 3 Effect of thicknéss on fre- Table 4 Effect of arehing on fre-
quencies of free arched tap-plate, quencies of free arched back-plate,
The modes are ordered as in Fig.d. © The modes are ordered as in Fiz.S5.

Mode 13,14 Imm 2mm Mode flat quarter normal double

109.9 94.7 go.2
18,7 153.9  122.4
308.8 255.7 201.3
322.5  2M.T  213.5
352.9 327.8  295.0
47,8 389.5 318.2
530.6 4ut.1 359.9
S548,1  450.0 3621
664.9  559.2 ba5.2
692.5 576.9 469.92

86.7 103, 128,2 159.
93.3 134, 184.4 214,
2u8,7 274, 288,2  357.
236.9 258, 3t1.4 390,
151.9 189. 358.7 515,
354.7 3B5.6 us4.8 573
483.2 534.6 552.6 673.8
un5, 0  495.1  5T6.6  TFUB.7
575.4 638.3 6u45.9 B867.9
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Tablz 5 Effset of thickness on fre-
quencies of free arched back-plate,
The modes are ordered as in Fiz.5.

Mode  fmm Sacconi  3mm 2mm

128.2 11,0 85.3
By 4 163.9 120.0
288.2 270.4% 205.8
3114 295.9 227.4
358,7 3W0.2 290.%
458.8 u438.7 340.6
552.6 519.7 394.9
576.6 S42.8 427.1
645.9 629.6 509.0
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Figure 1 Mash of top-plate.

116.2 2. 130.0 Hx. 181.7 2. 207.3 Hz.

Figure 3 Free, flat top-plate, h = 3Imm.

94.7 Hz. 153.9 Hz. 255.7 Hz. 2747 Hz.

Figure 4 Free, finished arched top-plate, h=3mm.
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J58.7 Hz.

184.4 Hz. 288.2 He.

455.8 .

Figure 5 Free, finished arched back-plate, h varying,

825.6 e

A
b3 (1

7.4 Hz. 1005.2 tiz. i0648.i 12344 'z,

Figure 7 Hinged back-plate,




