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1. INTRODUCTION.

Higher-order statistical techniques are attracting considerable current interest as a means for robust
estimation of the parameters of noisy signals. For example, third-order cumulants are insensitive to
added white or coloured Gaussian noise [1, 2], and this insensitivity extends to other noise sources
with symmetrical probability density functions. These techniques therefore offer promise for
improving the performance of speech recognisers when presented with noisy speech.

A technique [2] that has been used previously is to obtain an overdetermined set of linear
equations from the third-order cumulant plane and apply a least squares technique to derive the AR
parameters at a chosen order. The power cepstral coefficients are then found from these and used
to form the recognition feature vectors. The method requires choices to be made regarding the
order of the AR model and the initial cumulant equations, and the results may be sensitive to such
choices.

This paper describes the use of an alternative numerical technique that works for MA, AR
or ARMA signals, does not require knowledge of the model or its order or the selection of starting
equations. The method employs a two-dimensional deconvolutional technique [3] to compute the
complex cepstrum from the third-order cumulants of the speech signal; from this an estimate of the
power spectrum can be made.

2. POWER SPECTRUM ESTIMATION VIA THE COMPLEX BICEPSTRUM.
2.1 Complex Bicepstral Method for Power Spectrum Estimation.

Let a stationary non-Gaussian i.i.d random sequence, w(k), excite an ARMA system to
produce the output sequence x(k). The third-order cumulants of x(k), which for a zero-mean signal
are the same as the third-order moments, are given by:

R (m,m) = x(k)x(k +m)x(k +m) ¢y
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The two-dimensional Z-transform of R (m,n) may be denoted by B,(z,,z,), which when

evaluated on the unit surface gives the bispectrum. Pan and Nikias [3] introduced the complex
bicepstrum, ¢,{m,n}, of x(k) as:

c.(mn) = Z;'{log8,(z,,2,)1} @)
where Z;' dénotes the inverse two-dimensional Z-transform.
It may be shown [3] that :
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3
where P is the skewness of the input sequence w(k) and A and B™ are the complex cepstral
coefficients of the impulse response of the ARMA system. Thus the complex bicepstrum is
determined by the complex cepstrum along three straight lines and is zero elsewhere (see figure 1).

It is also shown [3] that a direct relationship between the complex bicepstrum sequence
¢ fmn} and its third-order cumulant sequence, R (m.n), exists and is fonnulated by a linear
convolution equation:

Rmn) * fmefmn)] = mR (mn) @)
where * denotes the convolution operator.

Since the equation holds over the unit surface (4] a solution for ¢ (m,n) can be obtained by
applying 2-dimensional discrete Fourier transforms (2D-DFT) :

P irl{nm'R (m,n)]} s
w0 W URR mm ©

where F,[.] and F;1[.] respectively denote 2D-DFT and inverse 2D-DFT.
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Figure 1. The complex bicepstrum of a non-minimum-phase deterministic signal (from [3])

It is seen in figure.1 that the complex cepstral A and B coefficients can be recovered from
the complex bicepstrum by the following relations:

c (mn) = —éA"" n=0,0<m<M

©

lJ!?(""’ n=0-M<m<0
m

where M is the chosen window length of the estimated complex cepstrum sequence. We note that
the method requires no phase unwrapping to compute complex cepstrum.
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The power cepstrum sequence, pfm}, is related to its complex cepstrum sequence by the
following relationship [4]:

A 4 5

pim) = p(-m) = po

Ocms M ()]

The log power spectrum, Pfa), can then be recovered by applying a FFT to the power
cepstrum sequence, after zero-padding, to give an up-sampled version of the cepstrally smoothed
log power spectrum :

P(e) = F{p(m)} @)
where F,[.] denotes DFT.

2.2 Comparison of Second-order (Fourier transform) and Third-erder Fower Spectrum
Estimation Methods.

To demonstrate the robusiness of the third-order power spectral estimation technique, a
comparison of the estimated power spectra from the second and third-order methods is shown in
figure 2. The estimate of the power spectrum by the third-order method was computed from a
25ms segment of the test signal. A two-dimensional Parzen window was applied to the estimated
cumulant plane to select 64 cumulant lags. Equations (5} and {6) were then used to generate 32
complex cepstral coefficients which by equation (7) gives 32 power cepstral coefficients. An
estimate of the log power spectrum was then obtained by equation (8) from an appropriately zero
padded version of the 31 power cepstral coefficients. To facilitate the second and third-order
spectral comparison, the conventional (i.e. second-order) Fourier transform estimate of the power
spectrum was cepstrally smoothed. This smoothing was achieved by selecting the same number of
second-order power cepstral coefficients that were used in the third-order power spectral estimate
(i.e. 32 coefficients).

The test signal used for the power spectrum comparison was a 25ms segment of a
synthetic vowel 'AH" that had been generated from a 10th order LP model excited by an impulse
train. Figure 2(a) compares the estimated spectra in the noiseless case. It can be seen from this
graph that the third-order method gives a power spectral estimate that is a close match to the
conventional or second-order estimate. Figures 2(b) and 2(c), respectively, show the estimated
power spectra for a noisy vowe! 'AH' by the second and third-order methods. The noisy vowel has
" been obtained by corrupting the synthetic vowel, by the addition of white Gaussian noise, to a
signal-to-noise ratio (SNR) of 15dB. If these graphs are compared it can be seen, quite clearly, that
the third-order estimate has been only marginally affected by the additive noise, whereas, the
second-order estimate has lost its third formant completely and its second formant is starting to be
swamped by the noise.

Proc.l.0.A. Vol 16 Part 5 (1994)




Proceedings of the Institute of Acoustics

FEATURE EXTRACTION VIA THE BICEPSTRUM

0 1,000 2,000 3,000 4,000 5,000
Frequency (Hz)
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3. SPEECH RECOGNITION EXPERIMENTS.

We have performed two recognition experiments on speech with additive noise. The first
experiment investigated the robustness of the third-order technique for speech that has been
corrupted by the addition of white Gaussian noise. The second experiment investigated the
robustness of the third-order technique for speech that has been corrupted by car noise,

As stated in the introduction to this paper, third-order cumulants are insensitive to Gaussian
processes [1,2], whether white or coloured. For this reason the recognition experiments that this
paper addresses are for vowel recognition, since vowel sounds fit better into the class of a non-
Gaussian signal than do fricative sounds.
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3.1 Vowel Recognition with Additive White Gaussian Noise.

In this experiment the recognition task was to classify steady-state vowel sounds into ten vowel
classes. Ten vowels were selected (AH, IY, ER, AE, OO, EH, II, UH, OH and OR), to generate
five hundred CVC words uttered by a single speaker. These utterances were lowpass filtered to
4.4kHz and sampled at 10kHz. A 25ms segment of the steady-state part of the vowel of each CVC
utterance was manually located and extracted, giving a total of fifty utterances for each vowel.

The feature vector type chosen to represent each speech segment was composed of mel-
scale frequency cepstral coefficients (MFCC's). Each feature vector was generated from the
estimated power spectrum by placing a triangular filter bank, of order twenty, over the frequency
range of O - SkHz. Each filter was linearly spaced with a 50% overlap on the corresponding mel-
scale frequency. A discrete cosine transform (DCT) was then applied the log aggregate energy of
each filter to generate eight MFCC's.

A maximum likelihood (ML) classifier was selected for the recognition task. The ML
classifier classifies the input feature vector, x, into vowel class 7 if p(x| i) > p(x| j) for all j = i,
where p(x| i) is the probability density function (PDF). The PDF assumed for this particular
classifier was multivariate Gaussian assuming a diagonal covariance matrix.

To perform the recognition experiment the data base was divided into twenty five training
tokens and twenty five test tokens for each vowel. White Gaussian noise produced from a pseudo-
random number generator was added to the clean test vowels at particular SNR (SNR range 5 -
50dB).

The results for the recognition experiment are given in figure 3. It can be seen from figure 3
that the second-order method gives better performance than the third-order method on clean
speech, however, this difference in performance is somewhat smaller than that reported by Paliwal
and Sondhi [2] for their method. We note, however, that figure 3 relates to a single speaker data-
base whereas the results in [2] are multi-speaker. In noisy conditions it can be seen that the third-
order method gives better robustness than the second-order method. At 15dB SNR the recognition
accuracy has fallen to approximately 49% for the second-order method, whereas the third-order
method is approximately 74% accurate.

3.2 Vowel Recognition with Additive Car Noise.

In a second set of experiments noise was taken from recordings made in a moving car (file
IDOS on the ETSI database), lowpass filtered to 4.4kHz. Figure 4(a) shows the power spectrum of
a 25mS segment of the car noise and figure 4(b) shows the PDF for the noise.

The experimental procedure for the recognition tests was identical to that in the white noise
tests. Again, clean test vowels were corrupted by the additive noise to obtain chosen SNR values.
The SNR calculations were made over the signals full bandwith of 4.4kHz and without applying
any form of weighting filter. The results for the recognition experiment are shown in figure 5.
Again, at high SNR (20dB) the second-order method gives a marginal improvement in recognition
accuracy compared to the third-order method, but at low SNR the converse is true. At -5dB SNR
the recognition accuracy has fallen to approximately 49% for the second-order method, whereas
the third-order method is approximately 62% accurate. The relative improvement in recognition
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accuracy of the second and third-order methods in the presence of additive car noise compared to
that in additive white Gaussian noise is probably due to the way in which SNR is calculated.

&b kiy

Figure 4(a) Power spectrum of car noiss Figure 4b) PDF of car noise.
(25mS segment),

Fi 4 Power spectrum robability Densitv Function (PDF) of car noise.
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4, CONCLUSIONS.

This paper has demonstrated that feature extraction via the complex bicepstrum can improve
recogniser performance when presented with noisy speech. The third-order method we have used
provides power spectral estimates which match closely the conventional cepstrally smoothed
estimates, The third-order method offers useful recognition performance gains on noisy speech
without seriously degrading the performance on clean speech, when compared with the second-
order method. It is also notable that the third-order method recovers the complex cepstrum of the
speech signal, and thus preserves the non-minimum phase information of the speech. The paper has
also demonstrated that the third-order method gives robustness to a 'real' type of noise, i.e. car
noise, and without the need to first estimate the noise characteristics.

Future work will include extending the vowel recognition experiments to a multi-speaker
data-base and comparing the performance of the third-order method against other robust feature
extraction algorithms.
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