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It is assumed that the blade is exposed to supersonic gas flow. First-order piston theory is used to 
evaluate the perturbed gas pressure. The unsteady aerodynamic lift La and moment Ma of a rotating 
blade are expressed as 
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where a is the density of air, U is the flow speed (U = x at each cross section), b is the chord 
length, a is the distance between the elastic axis and the mid-chord, divided by e. 
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equations of the blade-NES system can be written: 
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The Galerkin method can be used to discretize (3), which gives 
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where (x) and (x) is the first model shape of the bending and twist of a blade, respectively. They 
can be written as: 
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Moreover, we introduce 
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Substituting (4)-(7) into (3), and integrating over x from 0 to 1, yields 
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Without NES, the discretized dynamic model of rotating blade with aerodynamic force is 
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3. Dynamic responses 

Dynamic responses of a rotating blade coupled with a NES in supersonic flow is investigated in 
this section. In order to reveal the vibration suppression of NES for rotating blade, responses of ro-
tating blade without NES is also obtained. 

The main parameters used in this paper are chosen as: =4420kg/m3, E=123GPa, G=248MPa, 
L=30cm, b=3cm, e=3mm, I=0.16mm3, J=9.16mm3, A=120mm2, Km=8.7mm, Km1=1.2mm, 
Km2=8.7mm, a=1, 0=1.87, ∞=1.29kg/m3, c∞=340m/s. 

In order to suppress the dynamic response of blade due to supersonic flow, a NES is located on 
the blade. If we take = 0.1, = 0.5, = 104 and d = 0.9, the dynamic response of the blade can be 
obtained by solving (8) and (9). Figure 2(a) and 2(b) give the dynamic responses of blade when the 
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