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I. Introducticn,

Although the far field of the sound generated by
non-linear interaction of soundwaves in a beam haa
received the greateat interest, there have alsc appeared
some papers reporting on observations within the near
field, especially along the axis.l-u It has been shown
that the distribution of difference frequency sound
differs markedly from the distribution calculsted for
infinite plane waves5'6, and also that it depends strongly
on the beamradius and the intensity of the primary waves.
In this paper these affects will be considered in more
detall, We shall employ 2 mcdel of plane buc collimated
primary waves, and later try to aéégunﬁ for the gffecs
of nonlinear attenuation of the primary waves, At first,
jrowever, we shall examine thé validity of u51hg pigne
collimated primary waves as an appfoximation to the real
near field of the primary weves, when thege are radiated
from a circular piston,

1

1I. The near field of the primary waves.

A general discussion of the acoustical near fleld
of a circuler plsteon, besed upon analytical and numerical
solutions, is presented in Ref, (7). For the purpose of
diacussing the influence of the near field on non-linear
interaction some of the conclusions from Ref, (7) are
presented in the Appendix, The results are presented in
terms of the non-dimensional distance Z={x/a)(1/N} where
¥= axial distance, a= source radius and N=a/\, A= wave-
length, The transverse distance o.15 scaled in a: b=g/a,
We shall limit discussion to the case where interaction
chiefly takes place ilnslde the near field, 1.e. '
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;(“a+ab7-1 < 52/2), N attenuation coefficients of the
(primary waves,

Perhaps the most important property of the beam In
this connection i1s that the phase 1s virtually constant
across the beam, since the maximum phase-difference
between points on & cross sectlon will be of order m/8,
This means that 1f two different waves are present the
maximum phase shift between the virtual sources on a
eross section will not surmount w/#, Also, since the
-phase angles recede quite repldly for o>a, accompanied
by a rapid reduction of the amplitude, the interaction
region wiil*virtieliy be’confined to & cylinder with
radius the same as the source, The effect of the par-
axial reglon wiitl be-of minor importance since 1t occu-
ples only a small porticn of the cross section area,

The - intenelty 13 not uniformly distributed within
the beam;-Since- the strength of the virtual sources
will be proportional to the product of the primary wave
amplitudes one may roughly assume that the greatest
contribution to the generated sound will come from the
region defined somewhat arbitrarily by the latersal
extension of the plateau of amplitude 1. The latter
shrinks to some 70% of the source radius at Z=0.5,
whereafter the distinction of a platesu ceases to have
. any significance, Thisa beam contractlon does not in-
crease the intensity, which shows that the rest of the
energy 1s radiated away by the sidelobes. It 1s well
known that the main lobe, which 1s the continuation of
the plateau region in the far fleld, contains almost 8hg
of the total energy. Thus, when amplitudes alone are
considered, one should expect the generated sound to
reach an amplitude not less than B84% of the amplitude
attainable from an ldeal beam of plane collimated waves,
In this estimate the effects of the amplitude fluctua-
tions within the beam are ignored., These are difficult
to account for, but slnce the twe primary flelds will
differ in structure 1t-seems fair to regard these effects
as of minor importance., The effect of the beam contrac-
tion may be significant in the directivity pattern of

" the generated sound, which should become broader with
" decreasing beam radius, It could also show &n effect in
" the axial distribution, making the distance from the

»

138




source to the maJor maximumn smaIler

: One should also be aware that non-linear attanuatian
will not affect the primary beam in the same way as the
i1:1.nea.r attenuation. The latter turns out to leave the
‘beam structure virtually unchanged, while the non-linear
'lattenuation will affect the reglons of higher amplitude
much more than those of low amplitude, One_should expect
then that this should tend to smooth the fleld withln

the primary beam.

In view of thls discussion the model of plane coll-
imated primary waves should not be too far-fetched, and
we know -ta:some=axteant at:lasat-chowideviations may
ocour when comparisons are made to a real beam,’

III., Basicrequations,=: 5 =0 ::5A8

We shall empley the equation obtalned in Ref. (€)
which describas .the generation of difference frequency
sound by iaterst¢tian:of two primary waves in & dissipative
fluid correctly up to -and including- terms of order Mi
and Mlsl relative to ambient values, where M and S5 denote
Mach- and (modified) Stokes-number respectively:

]F' ‘Pol

5 S=12 a/k . (1)

M=
Here p= density of the fluid, k = w/c, ¢ = velocity of
sound, w= 27f where f = frequency, and o= {1inear)
attenuation coefficlent. Here and later, numerical
Vsuffixes refer to the order of perturbation: c,1 and 2
denoting amblent, first and second order quantities
respectively, while a and b denote the primary frequencies
and -,+,2a and ?b refer to the different frequency compo-
nents. The equation for the generated difference frequ-
ency sound may, after eliminatlon of the time dependance,
be expressed as

2 2 2 - »

a+ xPq = B 0 ct® KE agky o 8, = (2)
Here ¥=k-ic, ¥ =space dependant part of the primary veloc-
ity potentials and A=p o (d P/dp ) = B/A = non-linearity
parameter. An asterisk means complex conJugate. Simllar
equations mey be obtained for the other second order
'waves, Note that the attenuatlion term which appears on
. the left hand side of eq.(2) 1s of order Mfsz, and should
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'accordingly have been excluded, but 1s kept for obvious
physical reasons, Only the real part of g contains the
wented information, and even this is composite, consisting
,of the second order density p_ plus a term involving the
interactiqp energy: ’

g = Re(ae?¥®) = p_ + c7[Tyy + (A1V] ()

whers  p e ipone(!a-xg). Vop® %poc:,aRe(pap;),

the interaction kinetic and potential energy density

.respectively. It 1s easy to show, for instance from the
‘infinite plene wpve -solution, that. the interaction energy
ternm is negligible in most cases, except very closa to
,the sourqﬁmga few wavelengths) In the next section the
aolution of eq.(E} will be“ﬁbughf“by the use of Greens
method after having the boundary conditions specified,

STAGREAL

-IV. Axial distribution in a collimated heam.

. The primary waves are now supposed to be plane and
confined to & cylindrical beam of redius a, and we are
seeking an expreasion for the generated socund on the

axis of this beam, The conflguration lends itself to the
use of cylindrical coordinates (x,0,@], and the integra~
tion volume is taken to be the halfspace x = 0. The
symmetry eliminstes any dependance on 8. To separate

the observation point from the source points the co-
ordinates of the latter are primed, The boundary con-
ditions on q are taken to be6 q(0) = 0 and 1%gwq(x) = 0,
These conditions alsc apply to the Greens function, of
which a suitable form 1is

L_ ) -1! T -11 rII )
G(r-r') = - e

a Ty ¥y
where. Tror < [(x::x')2 d2 é (+) corresponding to rip

and {-) %o r;. rp is the direct distance from & source
point s(x',o') to the observation point P(x,0), while r s
represents the same distance reflected in the plane of
the primary source, The distribution of the generated
» gound may now be obtalned by

q(x) = -2n i""' l Qx',0') G(z-r')ordor. (5)

tThe source density Q(x',0') depends on o' only in that
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it vanTshes outside the beam, beéIﬁE‘thétEﬁf’kItﬁIn;.
When G 1s subsituted in eq. (5) one finds after integration
over o'

d ’ (12, 204 ,
q(x) = ﬁ‘! .[Q(x.)i(e-il_[(x-x )<+a lt - e'i"- | x-x I)

.<e-1x_[(x+x')2+32]é - e—i!_(x+x'))} ax?. (6)

Thnis expression 1s fairly obvious, and might have been
stated directly. The first bracket represents the axial
field at a distance (x-x') from a circular piston of
radius a. This part of the contribution to q ie then due
to a continous distrivution of virtual clrcular sound-
sources along the positive x-axls, The last bracket is
its image and represenis a distritution along the negative
x-axis, Another point of view is to note that the last
terms in each bracket together constitute the infinite
plane wave solution, wnile colllmation is taken into
account by the two first terms. The infinite plane wave
solution is well knoun.s'

The lest bracket in eg. (€} gives rise to contri-
butions which must be interpreted as backward-radiatilon,
and so does the first for x'> x, The magnitude of this
backward-radiastion relative to forward-radiation is easily
evaluated in the infinite plane wave case, and one finds

T+ -0
12R_+1(ua+d.b-u._)

In our experiment we have na/k;= 10'3.' Whether this
backward-radiation is physically existing or just a
mathematical concept is not known, but its order of
magnitude justifies discardance, With the source denslty
expressed as

b

ST

"= O(a,/k_}=0(48,0,/w ). (7)
9

Q(x) = C e;ik_x - (°h+°b)x (8)

c =22 wW¥uM
one then has to solve

where

‘ |
alx) = le'n‘.x"(“a+°b)x'{a-1x_[(x-x')24—32]#

- ) g (©)
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The last part of the integral is elementary while ro
analytical solution has been found to the first part.

For the purpose of numerical integration it is convenlent
to transform to nondimensional guantities y=x/a, Keak ,
A"‘(“a,*“b)' and when we neglect a_ in the first exponential
in the bracket (a fair assumptior. when a <<g +a ), eq. (9)
after some manipulation appears as

aly) = -%%c— e M i(y)-3(y)) (10)

where e.aa.y -a‘ﬁ'y
E(,) L ._KTlﬂ__- .{i.nf. plane wave solutl.an)

B(Iy) . e-ﬁv-ﬂifemz-m[(zeu)*;(;+1)1“ .

After re-introduction ¢f the time factor and extractiloh
of the real part we obtain the distrivution expreseidle as

p_{yet) =ip_(y)] sinfwt-Ky+uiy) (12}
with

Io_(7}] = 2% o ak M M F(y)
tan{p) = (Re(B)-E)/ Im(3} |
Ply) « ({Im(B)1% + [E - Re(B)]°}?

Our concern in p is only to check that dp/dy<-K, since
only in the complete scolution can one expect to find

4 = constant. The computetional result {dp/dy) /K=0(10">)
must be considered satlisfactory. :

Fig.1 shows results from eq. (11)9 with the parameters
used in our experiment: aef.5 ms, f =1i.0 MHe, fa=17.68 MHz,
together with the observed distribution. Evidently.tne
agreement is quite satisfactory, especially when one con-
siders the approximations made in the primary flelds.

{ A slight reducticn of the effective radius (5;) mekes
the agreement even better), The experiment will be
discussed in section VI, Do note the peculisar little
"hump” in the amplitude at y»Z, This hump 1s also Observed
almost at the right place, but sligntly less pronounced,
probably due to the finite slze of the probe., The nump
15 found to grow with difference freguency, which 1s alse
confirmed by experiments., This hump is in fact only the
largest of a_series of small fluztuations near the source,
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&nd 15 intimately connecied to the near field of the
virtual array, not to the near field of the primary waves.
It should be noted that a similar hump may be seen 1n the
axial distributicon of 2, narmcrnics gengrated in a circular
piston beam as observed by Gould et all In their case,
however, the hump occurs near tne limit of the primary
near field, so that the paraxial region of tne latter may
play a slgnificant part in determining the structure of
the hump.

el

S 08 200 B 3¢ 35 4 45 50 5% 60 y

Fig. 1. Arxial distritution c: difference frequency sound
amplitude as corsuted rom ez, 11)¥ :

, and B3
observed : «-«---, Tne curves have been ncrmalized in
amplitude at the maximur, Horizontal axis is axial
distance in nondimengiconal units (yex/a), vertic-al is
amplitude in arsitrary units,

5] T

o obteln sufficient resolutlion from rioize over the
range of distances snown it was necessary to use primary
wave amplitudes corresponding to Re=0.CE, A correction
for this is incorporated in the theoreticsl curve in
fig.1, as obtained in the next sectien., The slight effect
this has on the theoretical distribution is demonstrated
in fig. 2.
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V. Nonllnear attenuation,

Experimentally 1t 1s found that the distribution of
the generated difference freguency sound 1s very sensitive
to the amplitudes of the primary waves, The distance to
the maximum, ¥, ... for instance, seems to reach its upper
iimit for primary intensitles so small that the genergted
gound 15 hardly resolvable from nolse (Iaﬂlbslo'ja/cm‘).
The most obvious explanation to this seems to lie in the
fact that when successive approximations are used to
gsecond order only, the energy is not conserved since the
primary waves are quite unaware of their transfer of
energy to tha new sound waves, Thls, viclatlon of energy
conservation 1s not really important provided the trans-
ferred energy represents a vansih;ng part of the total
energy. Thus, the enerzy transferred to the difference
frequency wave does not glve reason for any alarm, but
this is not so when the second harmenics and the sum
freguency waves are concerned,

What we propose to do, of course, is to estimate the
amount of energy transferred to these waves, correct for
this in the virtual source density as used in the pre-
ceeding section, and recalculate the distribution for the
difference frequency, <This procedure is not quite equi-
valent to tne caleculation of the third order approximation
of tne baslc eguations, although one should expect the
gZross result to te the same, Note that since the basic
eguations are valid only to second order the third
apﬁroximation would not necessarily yield & hetter resﬁlt
than the suggeated method when the results are compared *
to experiments.

. The gecond harmonics and the sum frequency will
have directivities at least as nlgh as the primary
ifrequencies, and for the purpose of estimating the energy
transfer to these waves, 1t will be sufficlent to apply a
plane wave approximation, The amplitude of the difference
:frequency wave in the infinite plane wave case may be
?Titten in the form

hl_ -3 X

r Nr
.lp_l--%lpblube X (1. T %% X))




jhere we nave utilized aep'w™ (B'wconstant) and where -

M Ip, |
r, = (A+2)Re, = (A+2)-55 - aiz; - & H‘T
L, 1s the discontinuity distance for the wa‘wava when
ttenuation 18 neglected, Re is the acoustical Reynolds
pumber which, as does T, serves as a convenient number fo¥
describing the rslative importance of nonlinearity versus ;
iriscoaity. Roughly, nonlinearity may be assumed dominant
when '>1, 1,e, viscosity may then not prevent the fomatic?n
of & shock-front, and accordingly, harmonics to a high
oTder will ba epRareied . o
The sum frequency may be calculated in the infinite

plane wave case ,in_vgn__malggpus ny_:{merg, a8 may also the
second har:'no'nica, and ‘the Fesuli 1e

le 1~u-¢i1m‘g+“ word %atSo Migew - a0 T * )

Ippe] =¢r|p | 20T 1 - o255 (13}

ooy =-4—“Iphi e 2% 1 - &7 2%* )
The same rasult may be obtained by the use of Burgers
‘equation, see for instance Ref, {i0).
it maa-ub and a 0%, the expressions inside the bra-
ckets will be nearly equal, and Ps Pog and Poy will
jexperlence almost the same distribution 1n the x-direction
Note that p N almoat doubles the amplitude of the second
harmonics. The p_ wave will be distributed differently,
and attenuated more slowly. The amplitude will be of
forder m_/mb relative to Pog and p,y (when paﬂph). Concers
ing the energy density of the difference frequency wave
_Jrelative to the other second order waves, one flnds

‘ 7 - oG’

which in cur experiment amounta to the order of 10-4.

us, one should be careful in stating the validity of

e second order approximation in terms of the magnitude
jof the difference frequency alone, .
: To determine how energy is transferred from the .
;pr:l.mary waves one may employ the Manley-Rowe equatinpau,
*a.nd since the discussion above a:l.loyra ue to neglect the
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P_ wave, we find that when FaBFb and =y the energy-
transfer is very nearly equipartioned between the twe
primary waves, If we then denote by <Hai(x)> the time
mean of the energy of one primary wave not submitted to
-nonlinear attenuation and (Ha(x)> the energy transferred
to the second order waves, we may find the remalning
energy density of the primary wave (Haz(x)) by applying
energy conservation:

O (x)> e®%% = i, (x)> e2%X 4 G, (x)> &%%, (14)

where the exponentlals are introduced to compensate for
the different attenuations of the first ang gsecond order
waves., Applying equipartition and {W>=|p|° we now obtain

. R r
lpgol®= log, 1% @ Eaaxl 1 - 321 - 7 %%%) }

i.e. whenT < 1 orl ax <1 (ie x< L}:

-ax [ 3Fa2 Eﬂx '
lpy) = lpyy ! €% {1-567) M- e ] JL (15)

This result may be compared to the result of Keck and
Beyer12 who considered distortion of an originally sinus-
oidal wave of finite amplitude, and solved a basic equa-
tion, very similar to the cne from which eq, (2) is derived,
to high orders, Their third order solutlon corresponds to

r
ool = lpg, | e %X {1 - 3D - e 2%X) } (16)

The same result has been obtained by the use of Burgers
aquation, see for instance Blackstock13. Notice that the
production of a sum frequency wave introduces a reduction
of the primary wave ampllitude which 1s thrice the effect
of the second harmonic alone.

By introducing these corrected expressions for the
amplitude of each of the primary waves in the source term
in eq, (6) we are now able to obtain an expression for the
distribution of the difference freguency sound which
involves the parameter I' for the amplitude of the primary
waves, and at least should provide us with a first order
approximnxion to the dependence with the primary amplitude.
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The infinite plane wave part of the sclution is still
easlly integrated, and with the introduction of
-8 X _ - {maai-nab)

D =-2 = a_.
m a(maaﬂ'lab—u_)

it may be expressed as

E(x,T) -VDu'N‘E)? Dy4-[D54+Dy5] '&[D51+D15]} (an)

r4
+ %(-E) {Dll-2[D31+D13]+[D51+D15]44D}3'2[953+D35]+D55} .

The collimating part still has to be treated numerically,
of course. The results from the computations will be
treated in a form corresponding to eq.{ii):

lo_| =252 pax_ MM F(z,r), (18)

Where F{y,l') 1s the modified form of F(y) of eq.(11), the
latter now corresponding to F(y,0).
Fig.2 shows & plot of F(y,I') and E(y,') for three

"Hyn : a0’

o 8 12 18 26 30 38 42 48 55 &0

Fig.2. Computed axial distribution for different primary
amplitudes I', E refers to the infinite plane wave solu-
tlon, F to the camplete solutlon, ' = 0.55 corresponds to

Re = 0,08 when A = 5,
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different valuas of ', The effect of a finite value of r
18 easlly seen. The fact that the collimated distribution
for [ = i.66 exceeds that of I' = 0 for great distances is
_somewhat alsrming, since the effect of nonlinear attenua-
4ion 1s to shorten the virtual array, which means that the
amplitude should decay more raplidly along the axis. This
argument is also supported by observatlons in the far field,
The reason lies most probably in a small, yet undetected
numerical error which is accumulative, since the curvea
£it well for emall distances. Note that although =1,66
glves L~12a, so that eq.(15) becomes less accurate outside
the paximum, this may hardly explain the effect Just
discuaged,

For this reason we shall concentrate in the follow-
ing only on the variations of the maximum with the primary
amplitude, Fig.3 shows the observed and the computed

‘A 2 3 -4 B 5 1 8

Fig.3. Observed and computed variation of x . with
primary amplitude, & = systematic-, & = resoluticnal-
uncertainities, When stated in % the bara shown are only’

of typical lengths.
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L

variation of the distance to the maximum, Xnax? with the
primary smplitudes, The abscissa here 1s in Re, and
although the best confirmed value of A for water is around
5, we decided to use It as & parameter, with the values 5
and 7 to cover the most probable values, The ordinate is
X ax in mm. The uncertailnities commected with the experi-
mental values will be discussed in the next sectlon,
Although correspondence between the theoretical and the
obgserved variation of X rax is not complete, 1t may be
claimed to be satisfactory.

The variation of the amplitude with I' is presented
in fig. 4, which shows F(ymax‘r)/F(yhax’o) versus I,
together with the observed varlation in terms of
(vbbs/vag)/(vobsfvavb)ref » with A = 5. Here V,,V,
denote the voltages at the source transducer and Vobs
the probe wvoltage. Thus only calibration of the source
was necessary, hamely tc relate the observed points to T,
(vobsfvavb)ref was chosen somewhat arbltrarlly to ensure
g proper normalization, Also here a satisfactory corres-
pondence pvetween theory and experiment has been obtained.

A comparlscon involving absclute values of amplitudes
is ahown in fig.5, Thils 18 a plot of the observed pressure
as PobserVEd/ Pcalculated versus ', for the values A = §
and A = 7, Quite large uncertalnities are involved, the
systematic arising from calibration, and the scattering
uncertainities from the equipment resolutlon, Neverthe-
less, for A = 5 correspondence 1g quite good. For ' > 2
there 15 a trend towards higher observed values, This
might be due to the effect of hlgher order interactlons
(see alsc discussion in Ref, {10))}, but one should be
aware alsce that for these primary amplitudes the dlscontin-
uity distance L will be shorter than Xrax in this experi-
ment, so that eq, (15) will become less applicable, Still
similer trends may be seen, however, in the cobservatlons
presented in fig.3, where for Re > 0.4 (['>2,8) the Xnax
values seems to be somewhat less affected by an increase
in the primary amplitude, than below Re = 0,3,

Thus 1t may be concluded that the effect of none.
linear attenuation of the primary waves may account
rather well for the observed changes in the axial maxlimum
of the generated difference frequency sound, even 1ln this
rather crude way of compensating for the energy transfer
to the second order waves,
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Vi, The experiment.

The experimental configuration was as described in
Ref.(1); only minor details have been subject to refine-
ments. Continous waves were used throughout, Calibra-
tion of the scurce and the probe circult was obtalned by
the use of a very sensitive radicmeter, employing the
method of Borgnisih, and for the primary source the results
have been given in terms of an effective electrical
resistance R at the terminal where the primary voltages
are measured. By employing the same RF-meter throughout,
the calibration constant of this meter was ellminated
from the measurements. All effects known to be involved
by the use of radiometer measuremants have been taken into
account to reduce .systematilc errors. Although reproducil-
pility 1ndicates a spread of 2% in the obtained values of
R we use a value of 5% for the largest possible error.
This corresponds t¢ an uncertainity of 7% in the intenalty
when uncertainities in the effective source radius (3%)
and the voltage measurements (3%) are included.

From the calibration curve thus obtalned two frequen-
cies 1.0 MHz apart with equal R’s were selected, and the
primary frequencles 17,68 and 16,58 MHz were chosen, with
R = 53t2,5 Q, The same calibration procedure was used to
calibrate a 1.0 MHz source, which then was used to calil-
brate the probe circult, For the latter, one obtained
the calibration constant

b= 535 t 10% (u/mg)/v .

Of the other quantities involved, greatest uncertainity

is connected with the attenuation ccefficient B in anpr »
where we have used B = 2,5 £ 0.2 *10'14 2/m. Further we
nave used the values & = 6,5%0,2 *10™”m, ¢, = 1.49 *10°n/s
and p, = 10° kg/mB. To obtain a proper comparison with
theory only cbserved values where Fa mrb have been used,
Since both systematic errors (6), which will be constant,
and resolutional errors (A), which will produce a spread
in the observations, are very important in these compari-
gons, some discussion of the methods employed 1s necessary.
What we observe 1s

P

obs = © Voba = P Va¥p H(y,VﬁVb) (19)

where H represents the dlstribution, while the calculated
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pressure 1m
2 .
Peare = ColP. | = Ky Wy, Fiz.T). (20)

To ccmpare the distributions F sand H one needs a relation
between T' (or Re) and Vav . This may be expressed as

2 2 1 :

Re“= Re_Re, = vV, = V.V, . (21)
a B B2 [RrR @ b a b

a pocoﬁ £, 1y Ra.Rb >

In our experiment we have K, = 1/482 £ 13%, where the
uncertainity 1s systematic and comes from 68 and B(Ranb)

chiefly. The Mach-numbers are related to the voltages by

MK, = 2/ ;mapocgJaaab) v, . (22)

Comments fo fig,1. .

Since we used continous waves it was impossible to
eliminate completely the fluctuations which arise because
of reflecticns in the tank, The moast sericus fluctuaticns
turned out to originate from the suspension syetem of the
probe, and when these were reduced by the ald of a sharp-
edged V-reflector, the fine structure near the source
(the "mmp") became easily detectable. Small fluctuations
still exist, however, and the distribution shown in fig. 1
is a smoothed version of the really observed distribution.

Comments to fig.3.

The observed ¥max 8TE obtained from observed distril-
butions similar to fig.1. Uncertainities in Xypgx COME
from resolution and are not systematic: Axma:: = 2.5 mn,
Uncertainities in Re are partly systematic (6Kg): GRe=9f,
partly resolutlonal (AV):4&Re = 4§,

Comments to fig.4.
¥e want to plot H(ym,vavb)/n(ym,o) versus I,
From eq. {19) one has

H(ym'vavb)/ H(ym'o)’{(vobs/v avb)/ (vobs/v a.vb)ref}ym

where FV ob'/vlvb) ref = %*0 Vob s/ve.vb}' Vertically one

has a possible systematlc error fram the cheoice of the
reference value, which 1s lgnored, There remains then a
resolutional uncertainity 4 of order 5% arising from 4V,
Horizontally we still have & = 9% and A = L%,
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Comments to fig.5.
From eq. (19} and eq.{20) one obtalns

Poba - B Vobs o K obs
Palc KM W, F(y,T) 11 Y a'b F(V'I“ %)

where K;q = bacf;: R,Ry /{(A+2)f_. Note that A enters Ky..
Only systematlc errors are presgent 1n KII’ arlsing from
6o and 5R chiefly. Systematic errors also come from F
because of F(V3V5), but it is easlly seen from fig.4 that
an error of 9% in ' gives at most an error of 3% in F,
This gives us a possible systematlic error B(Pobsfpcalc)
12% and & resolutlonal error a(Pobs/Pcalc) = 5%, while
we 5till have B = 9% and &' = 4% along the horizontal

axis.

ViI, Discussions.
Evidently, as long as attenuation terminates inter-
action before the primary waves reach their far field,
the assumption of plane collimated primary waves seems to
be adeguate to describe the axigl distribution of the gene-
reted difference frequency sound, As apparent from eq, {9)
the difference frequency sound may be thought of as beeing
radiated from an array of circular piston sources with
radius the same as the primary source, and spatially
tapered in amplitude like the product of the primary |
waves, I1f the array length is made Infinitesimal the
resulting field would be the same as that of an ordlnary
piston source of the same frequency and radius {hereafter
referred to as OPS). The effect of a finlte length of the
erray should then be to smooth the field, so that diffrac-
tion fluctuations should become smaller than those from an
OPS. Still, even in an array of infinite length (primary
beam plane, though) remnants of the diffraction fluctua-
tions should be present in the vicinity of the primary
gource, superposed on the dominant part of the fleld,
which will be linearly increasing with distance, 1In this
case no true axial maximum will exist, of course, The
latter appears to be due to a comblnation of the effects
of diffraction, the finite length of the array and attenu-
ation of the generated wave (when important). If the
latter is negligible it is easy to see that the axial
maximm ("diffraction maximm”) will be aituated ocutside
the last axial maximum of the OPS, and coincide with the
: 53




latter only when the array is infinitesimal in length.
This will not necessarily be the case when the attenuation
of the generated wave 18 of importance, however, and 1f in
addition the array length 1s much shorter than the length
of the OPS near field, one should expect diffraction
effects to be negligible and the maximum to behave as an
“attenuation maximum", as in the infinite plane wave case.

The same arguments should apply to the second har-
monics and the sum freguency waves, Here, however, the
"giffraction maximum" should occur outside the near field
of the primary waves, so that to describe 1t properly the
more complicated properties of the primary near fields
must be taken into account (especially the paraxial
region). Roughly, since the primary waves diverge in their
far fleld, one should expect this to shift the "diffraction
maximum" inwards and place it somewhere near the last axigl
maximum of the primary waves, S5tlll, the plane collimated
wave model should apply when attenuation is high enough,
s0 that the waves will experience an "attenuation maximum"
instead of a "diffraction maximum",

Concerning our assumptlon in Section V, that these

‘ waves behave llke plane waves, we should be on safe ground,
since until & "diffraction maximum" is reached the waves
should be very nearly plane inside the beam, Since the
latter maximum should occur near the limit of the near
field of the primary waves, the initisl condition, i.e.
termination of interaction inside the primary near field,
will ensure plane high frequency second order waves within
the interaction region. This 1s also confirmed by the
observations of Gould et al.(op.clt.) which show that the
gecond harmenic is well collimated even at a distance
twice the distance to the "diffraction maximum".

Depletion of the primary waves due to generation of
second harmonlces and sum frequency waves seems to be
sufficient to account for the observed variations of the
axlal maximum of the generated difference frequency sound.
Provided T' < 1 or x < L, eq.(15) should be adequate to
account for this depletion of the primary waves. For
higher amplitudes and x > L this equation will no longer
be appropriate, however, a property which 1t shares with
the third order approximation of Burgers equation, since
at this level the effect of higher order waves can noc
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longer be neglected  , Still, the results presented here
show that when the maximum is concerned the deviatioms
between theory and observations are quite emall even for
large primary amplitudes. At great dlstances from the
primary eource, however, 1t is to be expected that the
limitations of eg.(15) will be much more pronounced,
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This equation was originally presented erronecusly
with a factor 4 instead of 3 in the laat term, The
correction of this error turned out to be of little
consequence and did not change any of the concluslions
drawn from the earlier resulta. Still, the results
presented here are computed from the corrected
equation.
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Appendix. The near field of a circular piston source.

1.

The résults from Ref.(7) may be summarized as follows:

The near fleld has the overall structure of a beam,
beeing well defined near the source, but diffusing
more and more with distance, From the beam there iz a

‘esontinous radiation of sidelcbes, the amplitudes of

which increase with the distance from where they emerge
from the beam, The totel number of sidelobes 15 2N- 1,
including the main lobe which dominates the beam for
zZ>1,

Inside the beam the field conslsts of a superposition
of those lobes which have not yet emerged, The struc-
ture of the field is accordingly very complicated, but
may roughly be classified as a "plateau" of amplltude
equal to 1 (in dimensionless pressure), on vhich are
superposed a set of large and a set of small fluctua-
tione, With increasing distance from the source the
larger fluctuatlons tend to move toward the axis, whlle
the smaller fluctuatlions always move outwards, and

show individual existance as sidelobes outside the beam,
This 1s of course also the destiny of the larger fluctua~
tions, but only after having crossed the axis.

The gross structure of the beam 18 determined by the
large fluctuations, The amplitudes of these are great-
est at the axis, where they may cancel the plateau, but
decay rapldly outside the paraxial reglon. At the beam
edge, however, there i8 a slight increase in the appll-
tudes again, and the last meximum has an amplitude of
ca. 0.2 above the plateau. This amplitude is almost
conatant for Z < 0,5. The latter maximum finally reach-
es the axis as a sole survivor, and composes the main
lcbe. The number of large fluctuations at any distance
fram the source may easily be calculated from

n = [{(x2+a2)% - x]/A = 1/22 when Z > 1/N. (A1)

At b = 1 the amplitude of the fleld is always close to
0.5 for Z <1, The beam itself, defined for instance
by the lateral extension of the plateau, appears to
cuntragt 8lightly with increasing 2, although this con-

traction 1ls poo:ly defined as the beam edge beccmes

‘more and more diffuse.
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5, The phase angle fluctuates very little across the beam,
For b & 1 it 18 centered at the same value as that of
an infinite plane wave of seme wavelength and initial
conditions, For b > 1 the phase angle recedes repidly.
Inside the beam the phase fluctuations on a cross sec-
tlon are typically of order 20 degrees, except within
the paraxisl region where they may be some_ 34 times
greater near the source, With increaslng distance the
megnitude of these fluctuation decreases, however, so
that one for most practlcal purposes may assume that
the phase angle is constant across the beam,

6, When linear attenuation 1s included sttenuation takes
place almost as for a plane wave, - Very llttle relative
change may be detected in the structure of the field,
and the phase angles behave as In the ldeal case.

As an illustration to these concluslions figs. Ai-A3
show cross sections of the computed field of the source
used in cur experiments at distances 10, 50 and 90 mm from
the source, Here N = T6.4 (ka = 480) corresponding to
f = 17.68 MHz in water. The horizontal axls is lateral
distance from the exls I1n mm, The upper curves show phase
angles in degrees (right vertical axis) while the lower
curves show the dimensilcnless pressure amplitude {left
vertical axis). Also included are the amplitude and phase
of a plane collimated wave of the same frequency and
initial phase, Attenuation 1s neglected. n refers to
the value obtained from eq. (A1),
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