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1. Introduction.

Although the far field of the sound generated by

non-linear interaction of soundwaves in a beam has

received the greatest interest, there have also appeared

some papers reporting on observations within the near

field, especially along the “iii—u It has been shown

that the distribution of difference irequency sound

differs markedly from the distribution calculated for

infinite plane waves5'6, and also that it depends strongly

on the beamradius and the intensity of the primary waves.

In this paper these effects will be considered in more

detail. We shall employ a model of plane bu]: emanated

primary waves, and later try to account for the effect

a nonlinear attenuation of the primary ,wsyes. as: first,

:hoyever, we shall examine the validity of using plane

collimated primary waves as an approximation to the real

near field of the primary waves; when these are radiated

from a circular piston.

II. The near field of the primary waves.

A general discussion of the acoustical near field

of a circular piston, based upon analytical and numerical

solutions, is presented in Ref. (7). For the purpose of

discussing the influence of the near field on non—linear

interaction some of the conclusions from Ref. (1) are

presented in the Appendix. The results are presented in

terms of the non-dimensional distance Z=(x/a)(i/N) where

x: axial distance, a: source radius and N-a/‘AJ- wave-

length. The transverse distance (Lie scaled in a: b-O/a.

He shall limit discussion to the case where interaction

chiefly takes place inside the near field, 1. e.
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‘(aa+q°)‘1 < 3.2/21, on") a attenuation coefficients of the

1primary waves.

Perhaps the most important property of the beam in

this connection is that the phase is virtually constant

across the beam, since the maximum phase-difference

between points on a cross section will be of order 11/3.

This means that if two different waves are present the

maximum phase shift between the virtual sources on a

cross section will not surmount 1/". Also, since the

phase angles recede quite rapidly for o>a, accompanied

by a rapid reduction of the amplitude, the interaction

region wi'ii’-3viftfiali'y71be‘confined to 'a cylinder with

radius the same as the source. The effect of the par-

axial resign KL *:.be:-_qf minor importance since it occu-

pies only a small portion of the cross section area.

Th intensity is not uniformly distributed within

the beam. __Six;co; the-strength of the virtual sources

will be proportional to the product of the primary wave

amplitudes one may roughly assume that the greatest

contribution to the generated sound will come from the

region defined somewhat arbitrarily by the lateral

extension of the plateau of amplitude i. The latter

shrinks to some 70% of the source radius at Z=0.5,

whereafter the distinction of a plateau ceases to have

-any simificsnce. This beam contraction does not in-

crease the intensity, which shows that the rest of the

energy is radiated away by the sidelobes. It is well

Known that the main lobe, which is the continuation of

the plateau region in the far field, contains almost 814%

of the total energy. Thus, when amplitudes alone are

considered, one should expect the generated sound to

reach an amplitude not less than 8105 of the amplitude

attainable from an ideal beam of plane collimated waves.

In this estimate the effects of the amplitude fluctuar

tions within the beam are ignored. These are difficult

to account for, but since the two primary fields will

differ in structure it- seems fair to regard these effects

as of minor importance. The effect of the beam contrac-

tion may be significant in the directivity pattern of

the generated sound, which should become broader with

' decreasing beam radius. It could also show an effect in

the axial distribution, making the distance from the
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source to the—Wor- maxinm smaller.-

. One should also be aware that non-linear attenuation

will not affect, the primary beam in the same way as the V

ilinear attenuation. The latter turns out to leave the

:heam structure virtually unchanged, while the non-linear

Iattenuation will affect the regions of higher amplitude

much more than those of low amplitude. One should expect

then that this should tend to smooth the field within

the primary beam.

In view of this discussion the model of plane coll-

imated primary waves should not be too far-fetched, and

we know -ta.-some:—‘extant attleastrtahowneviations may

occur when comparisons are made to a real beam.

     III. Basmrsguati‘anssi- Lxs

We shall employ the equation obtained in Ref.(6)

which describes-the generation ofdifference frequency

sound by 'in’te'racticm‘of two primary waves in a. dissipative

fluid correctly up to -and including— terms of order ME

and M151 relative to ambient values, where M and S denote

Mach— and (modified) Stokes-number respectively:

Q -POI=1M 90 ,

 

s = 2 a/k . (1)

Here p= density of the fluid, k = w/c, c a velocity of §

sound, m= 2“ where f a frequency, and a: (linear)

attenuation coefficient. Here and later, numerical

suffixes refer to the order of perturbation: 0,1 and 2

denoting ambient, first and second order quantities

respectively, while a and b denote the primary frequencies

and -,+,2a and 2b refer to the different frequency compo—

nents. The equation for the generated difference frequ-

ency sound may, after elimination of the time dependence,

be expressed as

vaq + qu = poo?)2 1:? “Head; 5 Q (2)

_Here X=k— in, Oinspace dependant part of the primary veloc-

ity potentials and Aapoc;2(d2P/dpe)° - B/A = non-linearity

gparameter. An asterisk means complex conjugate. Similar

quations may be obtained for the other second order

waves. Note that the attenuation term which appears on

éthe left hand side of eq. (2) is of order His? and “loud
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Inecox'dingly have been excluded, but is kept for obvious

physical reasons. Only the real part of q contains the

wanted information, and even this is cmposite, consisting

,or the second order density p_ plus a term involving the

interaction enery: '

s = Rememt) = 9_ + 632M“ + (A-IW‘WJ (3)
. _ e

“he” Tab“ éF‘omaua'lb)’ vab' ép<>‘:02Re(ps.ptu)‘

the interaction kinetic and potential enery density

.:respectively. It is easy to show, for instance from the

'mrmite slew Fasumnajheetns memtion energy
term is negligible in most cases, except very close to

‘the sou_rc_e {a genuyavelenigths). . In the next section the

solution ‘0 ;e¢i:1('é‘)"wivll be“;sjoufii1fiy the use of Greens

method after having the boundary conditions specified.

  

.Iv_ Axial istribution 1.1 acclimated beam.
: The primary waves are now supposed to be plane and

confined to a cylindrich beam of radius a, and we are

seeking an expression for the generated sound on the

axis of this been. The configuration lends itself to the

hse of cylindrical coordinates [x,o,9], and the integra-

tion volume is taken to be the helfspace x e 0. The

symmetry eliminates any dependence on 9. To separate

the observation point from the source points the co-

ordinates of the latter are primed. The boundary con-

ditions on q are taken to be6 q(o) a 0 and lxiqu(x) = 0.

These conditions also apply to the Greens Motion, of

which a suitable form is

-ix 1- -ix :-
e _ _

GE—z') v—r—MII - e "I? (u)

where r1, H = [(nx' )2 + d21é, (+) corresponding to :-II

and (-) to r1. rI is the direct distance from a source

point s(x',a') to the observation point P(x,0), while rII

represents the same distance reflected in the plane of

the primary source. The distribution of the generated

- sound may now be obtained by

q(x) . -zvr‘ldx'Iquo') GQ—g'w'do'. (5)

tThe source density Q(x‘,0') depends on 0' only in that
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it Ganisfies outside {fie Beam") be'eTn'g'coné’tfi'E

when G is subsituted in eq. (5) one finds after integration

over 0'

a ’ I 2 2 ‘ l
9(x) = $17 £Q(x')‘L<e'1x—i(x'x ) +3 I: - e-ix-Ix-x l)

_(e—iX_[(x+x')2+52]3 _ e—ix_(x+x'))} “I. (6) d

This expression is fairly obvious, and might have been

stated directly. 'me first bracket represents the axial

field at s distance (x—x') from a circular piston of

radius a. This part of the contribution to q is then due

to a continous distribution of virtual circular sound-

sources along the positive x—axis. The last bracket is

its image and represents a distribution along the negative

x- axis. Another point of View is to note that the last

terms in each bracket together constitute the infinite

plane wave solution, while collimation is taken into

account by the two first terms. The infinite plane wave

solution is well known.5'6

The last bracket in eq. (6) gives rise to contri-

butions which must be interpreted as backward-radiation,

end so does the first for x'> x. The magnitude of this

backward-radiation relative to forward—radiation is easily

evaluated in the infinite plane wave case, and one finds

   

b = aa+ab-°_ ‘g a

it °‘“a/“-’°‘*Ss”a/“-"”’
In our experiment we have oa/k_= 10'}. ‘ Hhether this

backward-radiation is physically existing or Just a

mathematical concept is not known. but itsorder of

magnitude Justifies discordance. With the source density

expressed as

Q“) _ c e—ik_x - ((13145)): (8)

c a A?) 90:: k-2 Mann
one then has to solve

x

cNM) = Egg:[e'u—x"(“a+%)x'{e-i!_[(x-
x')2+32]§

where

- {Mm} w. (9)
I'M



'The last part of the integral is elementary while no

analytical solution has been found to the first part.

For the purpose of numerical integration it is convenient

to transform to nondimensionsl quantities yer/a, B-ak_,

Anemawb). and when we neglect o. in the first exponential

in the bracket (a fair assumption amen o_<<oa+ob), eq. (9)

after some manipulation appears as

~10!) a gec— {Wren-am) no)
where a-:|.’.I_y _°-Ay

my) ....A.__._—— ,unr. plane wave solution)

my) a e-Maixfedu-ixusadfio(2+1)1“ '

After re-introduction of the time factor and extraction

of the real part we obtain the distribution expressible as

amt) -ip_(y)l BLfitfi'v-KYHIW“ (11)
with

ls_(v)| = 1‘33 no «.manbm)

mm a [mm-av m5) a

m) - {[Im(B)]2 + — neen‘fi

Our concern in u is only to check that du/dy<"-K, since

only in the complete solution can one expect to find

u a constant. The computational result (du/dy),'Ka-O(io'3)

must be considered satisfactory. ‘

Fig.1 shows results from e:.1.(1l)S with the parameters

used in our experiment: v6.5 m, f_=1.0 MHz, {£47.68 MHz,

together with the observed distribution. Evidentlythe

agreement is quite satisfactory, especially when one con-

siders the approximations made in the primary fields.

( A slight reduction of the effective radius (55) makes

the agreement even better). The experiment will be

discussed in section VI. Do note the peculiar little

"hump" in the amplitude at win This hump is also observed

almost at the rigit place, but slightly less pronounced,

probably due to the finite size of the probe. The hump

is round to you with difference frequency, which is also

confirmed by experiments. This hump is in fact only the

largest.of,a_,sez;i_e§__9_1j_,s_msll nu2tuations near the source,
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and is intimately connected to the near field of the

virtual may, not to the near field of the primary waves.

It should be noted that a similar hump may be seen in the

axial distribution of 2. nemcnics generated in a circular

piston beam as observed by Gould e_t a_12' In their case,
however, the hump occurs near the limit of the primary

near field, so that the paraxial region or the latter may

play a significant part i: determining the structure of

the hump.

             5 ID 20 15 36 35 L0 (.5 50 55 60 Y
15

Fig. 1. Anal dzstritution c:‘ differ-ewe frequency sound

amplitude as corputed from eq.x11)§ :

 

, wad as

observed : ----—-. The curves have been normalized in

amplitude at the maxi urn. Horizontal axis is axial

distance in nondimensi r‘al units (y-x/a), vertzrral is

 

amplitude in arsitrarg' units.

§l’1‘o obtain sufficient resolution from noise over the
:range of distances shown it was necessary to use primary
wave amplitudes corresponding to lie-0.08; A correction
for this is incorporated in the theoretical rurve in
{15.1, as obtained in the next section. 'me slight effect
this has on the theoreticu distribution is demonstrated
in 115.2.
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Experimentally it is found that the distribution of

the generated difference frequency sound is very sensitive

to the amplitudes of the primary saves. me distance to

the maximum, ym“. for instance, seems to reach its upper

limit for primary intensities so small that the generated

sound is hardly resolvable from noise (Inelbeio'Id/cm‘).

The most obvious explanation to this sea to lie in the

fact that when successive approximations are used to

second order only, the energy is not conserved since the

primary waves are quite unaware of their transfer or

energy to_th.s_. new sound waves. This. violation or energy

conservation is not really important provided the trans-

ferred enery represents s vansihing part of the total

energy. Thus, the energy- transferred to the difference

frequency Have does not give reason for any alarm, but

this is not so when the second harmonics and the sum

frequency waves are concerned.

What we propose to do, of course, is to estimate the

amount of energy transferred to these waves, correct for

this in the virtual source density as used in the pre—

ceeding section, and recalculate the distribution for the

difference frequency. This procedure is not quite equi—

valent to the calculation of the third order approximation

of the basic equations, although one should expect the

gross result to be the same. Note that since the basic

equations are valid only to second order the third

approximation would not necessarily yield a better result

than the suggested method when the results are compared '

to experiments.

l 'me second harmonics and the sum frequency will

have directivities at least as high as the primary

Frequencies, and for the purpose of estimating the energy

transfer to these waves, it will be sufficient to apply a

plane wave approximation. The amplitude of the difference

:frequency wave in the infinite plane wave case may be

iwritten in the form

(12)
r u r—

,lP_| --E [Dblfii e-ufx [i - e" “sub x)

I“

 



 

{more us have utilized o-B'u‘ (Iv-constant); and‘vhere-

M In |
I'“ - (A+2)Rea - (mas: - - A53 “330% ,

LA is the discontinuity distance for the «in wave when

ttenuetion is neglected, Re is the acoustical Reynolds ‘

‘umber which, as does 1‘, serves as a convenient lumber for

gescribing the relative importance of nonlinearity versus;

viscosity. Roughly, nonlinearity may be assmned dominant,

yhen l">i, 1.2., viscosity may then not prevent the formation
of a shock- front, and accordingly, harmonics to a high

larder mmmm . . _
The sum frequency may be calculated-in the infinite

‘plsne usvg cese‘Vin an analogous mantel-9, as may also the

second harmonics, and“'£he 'r‘e‘sulris

l" u
wwflwfiw- “.méepa-m2’“a% * )

logals Tlpal e' a (13)

1‘
lpebl =12:pr {2°ch 1 - 94%")

The same result may be obtained by the use of Burgers

equation, see for instance Ref.(10).
: If use-05 and onset. the expressions inside the bra.

ackets will be nearly equal, and 9+, on and 92b will I

Eexperience almost the same distribution in the x-directioh.

' ote that 9+ almost doubles the amplitude of the second

V armonics. The p_ wave will be distributed differently,

_a.nd attenuated more slowly. The amplitude will be of

9order w_/mb relative to 923 and 92b (when pat-sob). Concern‘

ing the enery density of the difference frequency wave

relative to the other second order waves, one finds

’ "- a 1(5)2) ,w; B «a. n
which in our experiment mounts to the order of 10- .

us, one should be careful in stating the validity or

e second order approximation in terms of the magnitude

[pf the difference frequency alone. I

: To determine how enery is transferred from the 4

waves one w employ the Manley-Rove aquatics-1511',

lband since the discussion above alle us to neglect the
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9_ wave, we find that when Fan?!) and max-wt, the energy.

transfer is very nearly equipartioned between the two

primary waves. I: we then denote by (Hu(x)> the time

mean or the enery of one primary HAVE not submitted to

nonlinear attenuation and (H290) the energy transferred

to the second order waves, we may find the remaining

energy density of the primary wave (H32(x)) by applying

energy conservation:

(“51(x» ezaa.x n (H8200) earls.X + (H2(x)> elma.x , (ill)

where the exponentials are introduced to compensate for

the different attenuations of the first and second order

waves. Applying equipartition and (w)a |p|2 we now obtain

' - f r - a f
|952|2= IPMI2 e eaexl 1 - 3(n—a)2[1 — e 2 5x12} .

i.e. when r < :L or 1‘“an < i (1.2. x < L):

z —ux r jra2 -2ax2‘ Vlpazl Male 5 11-5617) [i-e 3]}. (15)

This result may be compared to the result of Keck and

Beyer12 who considered distortion of an originally sinus-

oidal wave of finite amplitude, and solved a basic equa-

tion, very similar to the one from which eq. (2) is derived,

to high orders. Their third order solution corresponds to

r
lphel = Ipail e'°a" {1 — M2)?“ - e'zusx]2}. (16)

'me same result has been obtained by theuse of Burgers

equation, see for instance Blackstocku. Notice that the

production of a sun frequency Have introduces a reduction

of the primary wave amplitude Which is thrice the effect

of the second harmonic alone.

By introducing these corrected expressions for the

amplitude of each of the primary waves in the source term

in eq.(6) we are now able to obtain an expression for the

distribution or the difference frequency sound which

involves the parameter I" for the amplitude of the primary

waves, and at least should provide us with a first order

approximation to the dependence with the primary amplitude.
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'me infinite plane save part of the solutian is still

easily integrated. and with the Introduction of

D - e-u_x _ e-(maam%)

m a nfllmflb-fl_ '

it may he expressed as '

E(x,l") . Dada)? nifmalmul +§[n51+n15]} (17$

+ %(£)"‘{nu-Manama]+[n51m15144n3r2tn53+n351+n55} _

The collimating pert still has to be treated numerically,

or course. 'me results from the computations will be

treated in a form corresponding to eq.(1i):

lp_l - 5:3 pong Mash P(y.r) . '(18)
Where P(y,l‘) is the modified form of fly) or sq. (ii), the
latter new corresponding to F(y,0).

Fig.2 shows a. plot or F(y,I‘) and E(y,l‘) for three

         
0 B 12 ll 1‘ 30 38 ‘2 LI 5‘ 60

Fig. 2. Computed axial distribution for different primary
amplitudes I'. E refers to the infinite plane wave solu-

ticm, P to the complete solution. 1‘ - 0.55 corresponds to
Re - 0.08 when A - 5.
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different values or r. The effect or a finite value or r

is easily seen. “me fact that the collimated distribution

for l‘ - 1.66 exceeds that or r - 0 for great distances is

somewhat alarming, since the effect of nonlinear attenua-

tion is to shorten the virtual array, which means that the

amplitude should decay more rapidly along the axis. This

argument is also supported by observations in the far field.

he reason lies most probably in a small, yet undetected

numerical error which is accumulative, since the curves

{it well for small distances. Note that although I‘=1.66

gives Ifilea, so that eq. (15) becomes less accurate outside

the maximum, this may hardly explain the effect Just

discussed.

For this reason we shall concentrate in the follow-

ing only on the variations of the maximum with the primary

amplitude. Fig.3 shows the observed and the cmputed

 
'.l .2 3 'A .5 S ,7 .8

Fig.3. Observed and computed variation of xhle with

primary amplitude. V 6 a systematic-, A - resolutional-

\mcertainities. Hhan stated in 5 the bars sham are only'

of typical lengths.
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variation of the distance to the maximum, xmu, with the

primary amplitudes. The abscissa here is in Re, and

although the best confirmed value of A for water is around

5, we decided to use it as a parameter, with the values 5

and 7 to cover the most probable values. ’lhe ordinate is

xnmx in mm. The uncertainities connected with the experi-

mental values will bediscussed in the next section.

Although correspondence between the theoretical and the

observed variation of xnmx is not complete, it may be

claimed to be satisfactory.

’me variation of the amplitude with 1" is presented

in fig“, which shows F(ym,F)/P(ym,0) versus I",

together with the observed variation in terms of

(vobs/vag)/(vobs/Vavb)ref ‘ With A = 5' Here Va'Vb
denote the voltages at the source transducer and Vc’bs

the probe voltage. Thus only calibration of the source

was necessary, namely to relate the observed points to l".

(vobs/vavb)ref was chosen somewhat arbitrarily to ensure

a proper normalization. Also here a satisfactory corres—

pondence between theory and experiment has been obtained.

A comparison involving absolute values of amplitudes

is shown in fig.5. This is a plot of the observed pressure

as Pobsened/ Pcuculated versus 1". for the values A = 5

and A = 7. Quite large uncertainities are involved, the

systematic arising from calibration, and the scattering

uncertainities from the equipment resolution. Neverthe-

less, for A = 5 correspondence is quite good. For I‘ > 2

there is a trend towards higher observed values. This

might be due to the effect of higher order interactions

(see also discussion in Ref. (10)), but one shouldbe

aware also that for these primary amplitudes the discontin-

uity distance I. will be shorter than Jim“ in this experi-

ment, so that eq. (15) will become less applicable. Still

similar trends may be seen, however, in the observations

presented in fig.), where for Re > 0.13 (I‘>2.8) the M

values seems to be somewhat less affected by anincrease

in the primary amplitude, than below Re = 0.}.

Thus it may be concluded that the effect of nor».

linear attenuation of the primary waves may account

rather well for the observed changes in the axial maximum

of the generated difference frequency sound, even in this

rather crude way ofcompensating for the emery transfer

to the second order waves.
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I.
£15.15. TlggEongd licqgugggfl'elative change in

Mm Amplitude versus r.

8(1):]2'Io

6 l' = 9'].

A"): 5'].
A F : lc'l.

 
“’13. 5. Comparisons of observed and computed absolute

iprassure amplitude at the maximal: versus I‘.

   



 

VI. The egerimsnt.

The experimental configuration was as described in

not. (i); only minor details have been subject to refine-

ments. Continous waves were used throughout. Calibre.-

tion of the source and the probe circuit was obtained by

the use of a very sensitive radiometer, employing the

method of Borgnisiu, and for the primary source the results

have been given in terms of an effective electrical

resistance R at the terminal where the primary voltages

are measured. By employingthe same RF-meter throughout,

the calibration constant or this meter was eliminated

from the measurements. All effects known to be involved

by the use of radiometer measurements have been taken into

account to reducg systematic 'errors. Althougl reproduci-

bility indicates a spread of 2% in the obtained values of

R we use/a value of 5% for the largest possible error.

This corresponds to an uncertainity or 7% in the intensity

when uncertainities in the effective source radius (3%)

and the voltage‘measurements (3%) are included.

From the calibration curve thus obtained two frequen-

cies 1.0 MHz apart with equal R‘s were selected, and the

primary frequencies 17.68 and 16.68 MHz were chosen, with

R = 5322.5 Q. be same calibration procedure was used to

calibrate a 1.0 MHz source, which then was used to celi-

brate the probe circuit. For the latter, one obtained

the calibration constant

I: = 535 2 10% (N/m2)/v .

Of the other quantities involved, greatest uncertainity

is connected with the attenuation coefficient B in manta,

where we have used B = 2.5 t 0.2 “lo-flee/m. Further we

have used the values a = 6,520.2 '10'3'm, c‘3 -= 1.149 “103m/s

and po = 1.03 lag/m3. To obtain a proper comparison with

theory only observed values where Fa HI‘b have been used,

Since both systematic errors (6), which will be constant,

and resolutional errors (A), whidn will produce a spread

in the observations, are very important in these compari-

sons, some discussion of the methods employed is necessary.

What we observe is

Pobsfibvobs a b vavb lluy'vavb) (19)

where H represents the distribution, while the calculated
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pressure is

2 .

Peale ' Colo-I ' KI Mant: “y’n‘ (20)

To compare the distributions 1? and H one needs a relation

between I‘ (or Be) and vavb. This may be expressed as

2 2 1 aRe Refinell may $be V9Vb KRVEVb . (21)

In our experiment we have KR a 1/1682 t 131, where the

uncertainity is systematic and comes from 513 and 5(R8Rb)

chiefly. 'me Mach-numbers are related to the voltages by

sash =- 2/(m2pocZJasnb) va'vb . (22)

Cements to {15.1. .

Since we used continous waves it was impossible to

eliminate canpletely the fluctuations which arise because

of reflections in the tank. The most serious fluctuations

turned out to originate from the suspension system of the

probe, and when these were reduced by the aid of a sharp-

edged V-reflector, the fine structure near the source

(the "hump") became easily detectable. Small fluctuations

still exist, however. and the distribution sham in fig.1

is a smoothed version of the really observed distribution.

cmenta to 113.3.

‘me observed arms“ are obtained from observed distri-

butions similar to (15.1. Uncertainities in arm” cons

{ran resolution and are not systematic: Axumx = 2.5 m.

Uncertainities in Re are partly systematic (SKR): fine-95,

partly resolutions]. (AV):ARe = M5.

Comments to {13.4.

He went to plot H(ym,VBVb)/H(ym,0) versus I'.

From eq. (19) one has

n(ymax'vavb)/H(ymax'°)={(vobs/vavb)/(webs/vavb)ref}ym

where ‘Vobu/V‘Vbnef n #0 vobB/vavb}. Vertically one

has a possible systematic error frm the choice of the

reference value, which is ignored. {mere remains then a

resolutional \mcertainity A of order 55 arising from AV.

Horizontally we still have or n 95 and AF - 1&5.

I52



 

Comments to fig.5.

Prom eq.(19) and eq.(20) one obtains

Pobs _ b Vobs a K vobs 1

icalc a y‘ n :a“?! FIY’I Hails”

where Kn = he.ch Rafib /(A+2)f_. Note that A‘enters Kn.
Only systematic errors are present in Kn, arising from

5b and ER chiefly. Systematic errors also come from 1"

because of 1‘(VBVb), but it is easily seen from fing that

an error of 9% in r gives at most an error of 3% in F.

This gives us a possible systematic error Swabs/Peale) s

12% and a resolutional error A(Pobs/Pcalc) = 5%, while

we still have 51' = 9% and bl" = “93 along the horizontal

axis.

VII. Discussions.

Evidently, as long as attenuation terminates inter-

action before the primary waves reach their far field,

the assumption of plane collimated primary waves seems to

be adequate to describe the axial distribution of the gene-

rated difference frequency sound. As apparent from eq. (9)

the difference frequency sound may be thought of as heeing

radiated from an array of circular piston sources with

radius the same as the primary source, and spatially

tapered in amplitude like the product of the primary

waves. Ifthe array length is made infinitele the

resulting field would be the same as that of an ordinary

piston source of the same frequency and radius (hereafter

referred to as OPS). The effect of a finite length of the

array should then be to smooth the field, so that diffrac-

tion fluctuations should become smaller than 'those from an

OPS. Still, even in an array of infinite length (primary

beam plane, though) remnants of the diffraction fluctua-

tions should be present in the vicinity of the primary

source, superposed on the dominant part of the field,

which will be linearly increasing with distance. In this

case no true axial maximum will exist, of course. The

latter appears to be due to a. combination of the effects

of diffraction, the finite length of the array and attenu»

ation of the generated wave (when important). If the

latter is negligible it is easy to see that the axial

maximum ("diffraction maximm") will be situated outside

the last axial maximum of the OPS, and coincide with the
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latter only when the array is infinitesimal in length.

This will not necessarily be the case when the attenuation

of the generated wave is of importance, however, and if in

addition the array length is much shorter than the length

of the CPS near field, one should expect diffraction

effects to be negligible and the maximum to behave as an

“attenuation maximum", as in the infinite plane wave case.

The same arguments should apply to the second har—

monics and the sum frequency waves. Here, however, the

“diffraction maximum“ should occur outside the near field

of the primary waves, so that to describe it properly the

more complicated properties of the primary near fields

must be taken into account (especially the paraxial

region). Roughly, since the primary waves diverge in their

far field, one should expect thisto shift the "diffraction

maximum" inwards and place it somewhere near the last axial

maximum of the primary waves. Still, the plane collimated

wave model should apply when attenuation is high enough,

so that the waves will experience an "attenuation maximum”-

instead of a "diffraction maximum".

Concerning our assumption in Section V, that these

jwaves behave like plane waves, we should be on safe ground,

since until a "diffraction maximum" is reached the waves

should be Very nearly plane inside the beam. Since the

latter maximum should occur near the limit of the near

field of the primary waves, the initial condition, i.e.

termination of interaction inside the primary near field,

will ensure plane high frequency second order waves within

the interaction region. This is also confirmed by the

observations of Gould 53 gl.(op.cit.) which show that the

second harmonic is well collimated even at a distance

twice the distance to the “diffraction maximum".

Depletion of the primary waves due to generation of

second harmonics and sum frequency waves seems to be

sufficient to account for the observed variations of the

axial maximum of the generated difference frequency sound

Provided F < i or x < L, eq.(15) should be adequate to

account for this depletion of the primary waves. For

higher amplitudes and x > L this equation will no longer

be appropriate, however, a property which it shares with

the third order approximation of Burgers equation, since

at this level the effect of higher order waves can no
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longer be neglected ,10 Still, the results presented here

she- that then the maxim is concerned the deviations

between theory and observations are quite smalleven for

large primary amplitudes.

primary source, however,

At pest distances tron the

it is to he expected that the

limitations of e'q. (15) will be much more pronounced.
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his equation was originally presented erroneously

with afactor ‘1 instead of 3 in the lost term. The

correction of this error turned outto be of little

consequence and did not change any of the conclusions

drawn from the earlier results. Still, the results

presented here are canputed {run the corrected

equation.



  

Appendix. 'me near field of a circular piston source.

be results from Ref. (7) may be smarized as follows:

i. The near field has the overall structure of a beam,

beeing well defined near the source, but difmsing

more and more with distance. From‘ the been there is a

continous radiation or sidelobes, the amplitudes of ‘

which increase with the distance from where they .emerge

from the beam. The total number of sidelobes is 2N— %,

including the main lobe which dominates the beam for

Z > i.

2. Inside the beam the field consists of a superposition

of those lobes which have not yet emerged. The struc—

ture of the field is accordingly very complicated, but

may roughly be classified as a "plateau" of amplitude

equal to 1 (in dimensionless pressure), on which are

superposed a set of large and a set of small fluctua-

tions. With increasing distance from the source the

larger fluctuations tend to move toward the axis, while

the smaller fluctuations always move outwards, and

show individual existence as sidelobes outside the beam.

Ibis is of course also the destiny of the larger fluctua-

tions, but only after having crossed the axis.

3. 'me goes structure or the beam is determined by the

large fluctuations. 'me amplitudes of these are gest-

est at the axis, where they may cancel the plateau, but

decay rapidly outside the paraxial region. At the beam

edge, however, there is a slight increase in the ampli-

tudes again, and the last maximum has an amplitude of

ca. 0.2 above the plateau. This amplitude is almost

constant for Z < 0.5. “me latter maximum finally reach-

es the axis as a sole survivor, and composes the main

lobe. The number of large fluctuations at any distance

from the source may easily be calculated from

n =- [(1:2+a2)é — x]/'A =1 1/22 when Z > 1/“. (A1)

1|. At b = i the amplitude of the field is always close to

0.5 for Z < 1. he been itself, defined for instance

by the lateral extension of the plateau, appears to

contract sliptly with increasing Z, slthoug: this con-

traction is poorly defined as the beam edge becomes

more and more diffuse.
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5, The phase angle fluctuates very little across the bean.

For b 5 i it is centered at the same value as that or

an infinite plane wave or same wavelength andinitial

conditions. For I: > :L the phase angle recedes rapidly.

Inside the beam the phase fluctuations 'on a cross sec-

tion are typically of order 20 degrees, except within

the paraxial region where they may be someJ-ll times

greater near the source. With increasing distance the

magnitude of these fluctuation decreases, however, so

that one for most practical purposes may assume that

the phase angle is constant across the beam.

6. When linear attenuation is included attenuation takes

place almost as for a plane wave. 'Very little relative

change may hedetected in the structure of the field,

and the phase angles behave as in the ideal case.

As an illustration to these conclusions figs. All-A3

show cross sections of the computed field of the source

used in our experiments at distances 10, 50 and 90 mm from

the source. Here N = 76.“ (ka = 1‘80) corresponding to

f = 17.68 MHz in water. Thehorizontal axis is lateral

distance from the axis in mm. The upper curves show phase

angles in degrees (right vertical axis) while the lower

curves show the dimensionless pressure amplitude (left

vertical axis). Also included are the amplitude and phase

of a plane collimated wave ofthe same frequency and

initial phase. Attenuation is neglected. n refers to

the value obtained from eq. (A1).
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