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In this study, the dynamic stiffness method, which yields exact solutions for plate structures, is 
employed to analyze the dynamics of ship structures. A dynamic stiffness formulation is devel-
oped for both in-plane and bending vibrations of plates with two opposite edges simply sup-
ported. Classical finite element technique is utilized to assemble local stiffness matrix into 
global coordinates to yield the dynamic stiffness matrix of a complete and complex structure. 
The method is then applied to an idealized model of a double bottom cabin structure as an ex-
ample, within which both in-plane and bending vibration characteristics of the cabin can be 
clearly reproduced. Our numerical results are in good agreement with those calculated from fi-
nite element method, which demonstrates that this dynamic stiffness formulation has great po-
tential in modelling the dynamics of built-up plate structures, especially in characterizing the in-
plane waves, bending waves, and their mutual conversions along plate junctions. 
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1. Introduction 
Plates are extensively used as major components in various industrial structures, including ships, 

airplanes, building walls, and etc. In such engineering applications, plates are generally joined to-
gether along their junctions with specific angles, within which the longitudinal, shear and bending 
waves are transmitted. Particularly, these three waves can be converted into each other due to wave 
reflection and refraction[1], which makes the dynamic characteristics of the entire systems very 
complicated. Hence, there is an increasingly strong motivation for reliable prediction of the dy-
namic responses of plate structures. 

Up to now, various DSM (dynamic stiffness method) elements have been developed for trans-
verse or in-plane vibrations of plates. Wittrick and Williams proposed DSM in nineteen seventies 
based on classical plate theory[2]. Casimir et al. developed DSM elements for a plate with com-
pletely free boundary conditions[3], in which Gorman’s superposition method[4,5]was employed to 
obtain the exact transverse displacements and the calculation of the forced vibrations for a single 
plate was demonstrated. Nefovska-Danilovic and Petronijevic[6]developed a dynamic stiffness ma-
trix for isotropic rectangular plates with arbitrary conditions undergoing in-plane free vibrations.  

However, compared to intensive research works on either bending or in-plane vibrations, the de-
velopment of DSMs for them both was very limited. Bercin and Langley[1] extended Langley’s 
work[7] to drive a dynamic stiffness matrix including in-plane vibrations for a plate with two oppo-
site edges simply supported. Nevertheless, the dynamic stiffness matrix was not in an explicit form. 
Li et al.[8] derived the dynamic stiffness matrix considering both transverse and in-plane vibrations 
and investigated the forced vibrations of built-up plate structures. The recently developed DSMs for 
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thick and composite plates that account for shear deformation and rotatory inertia can generally 
include both in-plane and bending vibrations, but most of these works were only focused on the free 
vibrations or buckling.  

The main objective of this work is to investigate both in-plane and bending vibration characteris-
tics of a double-bottom cabin based on our newly developed dynamic stiffness formulation[8]. In 
Section 2, this dynamic stiffness method is briefly summarized, which mainly explains how both in-
plane and bending vibrations of plates are incorporated into the dynamic stiffness matrix of plate 
element. Then in Section 3, our proposed method is applied to an idealized model of a double bot-
tom cabin structure as an example. Our numerical results are in good agreement with those calcu-
lated from finite element method, which demonstrates that this dynamic stiffness formulation has 
great potential in modelling the dynamics of built-up plate structures, especially in characterizing 
the in-plane waves, bending waves, and their mutual conversions along plate junctions. 

2. Brief review of dynamic stiffness method 

2.1 Description of dynamic stiffness models for plate structures 
For sake of completeness, our previous work  is briefly summarized below. Shown in Fig.1 (a) is 

a conventional plate structure which consists of multiple plates. Adjacent plates are simply sup-
ported at their two opposite edges and rigidly joined along common edges.  

 

 
Fig. 1 (a) A built-up plate structure with arbitrarily oriented plates; (b) A rectangular plate with two opposite 

edges simply supported. 
An individual plate shown in Fig. 1(b) is taken from the plate structure, to which the local coor-

dinates oxyz are attached. The global coordinates OXYZ are independent of any specific local co-
ordinates. Once the local dynamic stiffness matrix is derived, the overall dynamic stiffness matrix 
of the structure can be obtained by assembling all the local stiffness matrices after coordinate trans-
formation.  

2.2 Development of dynamic stiffness matrix in local coordinates 
Without loss of generality, as illustrated in Fig.1 (b), the rectangular plate we select has the di-

mension of x yL L×  and thickness h. It is simply supported along its two opposite edges while the 
other two edges are prescribed to be free. Based on the classical thin plate theory, the governing 
equations of the in-plane and bending motions of a plate are      
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where u, v and w are the displacements in x-, y- and z-directions. The parameters in Eq. (1) are 
defined as 
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where B and D are the extension rigidity and flexural rigidity, respectively. E, ρ , and µ  are 

Young’s modulus, density and Poisson’s ratio. The damping of material is taken into account by 

introducing complex modulus of elasticity, namely, (1 ),CE E i δ= + ⋅  where 2δ η=  is  damping 
loss factor, η  is damping ratio. 

For simply supported boundary conditions along their two opposite edges, namely, y 0=  and 
yy = L  , we have 0u = and 0w = ，but 0v ≠ . Therefore, the in-plane and out-of-plane displace-

ments, respectively, can be expressed in terms of Levy series, 
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where N is the truncation number, nk  is wavenumber in y direction that can be written as 
/π=n yk n L . For sake of brevity, the time dependence 

i te ω
will be suppressed hereafter. In refer-

ence[8], Leissa’s solutions for bending vibrations[9], together with Becin and Langley’s[1] accurate 
expressions for in-plane vibrations are employed, as a result, the internal forces within the plate, 
including extensional forces, in-plane and transverse shear forces, and bending moments, can be 
readily derived.  

In order to obtain the dynamic stiffness matrix, the displacements and forces at the junctions, i.e, 
x=0 and x=Lx, shall be derived beforehand, which can be arranged in the following forms, respec-
tively, 

                                            { }1 1 1 1 2 2 2 2, , , , , , , Tq u v w u v wθ θ=                                                      (4a) 
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where the subscript 1 denotes x=0 while 2 corresponds to x=Lx, and 
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the convention of displacements and forces, Eq. (4) can be rewritten in more details, 
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In the present paper, using Projection method, expressions for the displacements and forces in Eq. 

(5) can be transformed into generalized displacements 1 8
, , , ,n N N

q q q q
×
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 , respectively. By combining the expressions for generalized dis-
placements and forces, the following relationship between them can be readily obtained, leading to 

the dynamic stiffness matrix DK  of a plate element. 
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                                                                     ( )DF K qω=                                                                          (6) 

2.3 Coordinate transformation and assembly procedure of global dynamic stiff-
ness matrix 

The dynamic stiffness matrix derived in the previous subsection is expressed in local coordinates, 
which can be termed as local dynamic stiffness matrix. In order to obtain the dynamics of the entire 
plate structures, first, local dynamic stiffness matrix for each plate shall be transformed into global 
coordinates.  

The global and local coordinates systems for the plate structures are illustrated in Fig.1. By as-
suming that the local coordinate system oxyz can be obtained by rotating OXYZ system about Y 
axis by an angleθ , then the transformation of the displacements and forces at any nodes from 
global coordinates to local is obtained by a matrix T which can be expressed as, 
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Therefore, for a plate substructure, the relationship between the generalized displacements in 

global coordinates 
gq and in local coordinates q  is written as, 

                                                      = gq Tq                                                                (9) 
Similarly, the transformation of generalized forces is, 

        
g

F T F=                                                                     (10) 
Accordingly, the transformation of stiffness matrix is expressed as follows, 

                                                                       
g T

D DK T K T=                                                       (11) 

where DK and 
g

DK  are the dynamic stiffness matrix for a plate substructure in local and global 

coordinates, respectively. Next, the transformed stiffness matrix 
g

DK shall be assembled into over-
all dynamic stiffness matrix by using standard finite element techniques. The assembly procedure is 
the same as that in FEM, except that the degrees of freedom for plates correspond to lines instead of 
nodes. 

3. Numerical results and discussion 
In this section the above mentioned theory is applied on an idealized model of a double bottom 

cabin structure. The structure, consisting of nineteen plates is shown in Fig. 2. The widths of the 
nineteen plates, respectively, (in meters) are: 1.75, 2.5, 1.75, 2.2, 6, 2.2, 0.8, 0.414, 0.414, 0.414, 
0.95, 1.6, 2.5, 1.6, 0.95, 0.414, 0.414, 0.414, 0.8, and the length is 10. The thickness of the plates (in 
millimeters) are 10, 10, 10, 8, 8, 8, 14, 14, 14, 14, 14, 12, 14, 12, 14, 14, 14, 14, 14. Each plate is 
simply supported at its two longitudinal edges, and the other two transverse edges, which are the 
coupled edges, are prescribe to be free. Each member of the structure is taken to be steel, which has 
the material parameters listed in Table 1. 

Table 1: Material parameters of the double bottom cabin 

E(Gpa) ρ (Kg/m3) µ  η  
200 7850 0.33 0.002 
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(a) 

 
(b) 

Fig. 2 (a) FEM model of the double bottom cabin structure; (b) Front view of the double bottom cabin struc-
ture 

In this paper, validation works are updated so as to further confirm that our proposed DSM can 
present accurate results for both in-plane and out-of-plane vibrations of complex cabin structures, 
even in very high frequencies. The computation frequency range covers from 0 Hz to 5,000 Hz. 
With reference to the suggestions from Li et al [8], the truncation number N for DSM is set to be 10, 
and finite sizes for the plates are prescribed to be 0.2 0.2m m×  and 0.1 0.1m m× , respectively. As 
shown in Fig. 3, two types of harmonic loadings are applied onto one of the inner bottom plates so 
that the in-plane and bending vibrations can be excited, including uniformly distributed transverse 
forces and an unit concentrated force. The concentrated force is loaded in 2/5 of the length edge, 
and the observation point A is located in 1/5 of the length edge.  

 

 
Fig. 3 Schematic illustration of forces applied to the double bottom cabin structure 
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(b) 

Fig. 4 (a) Transverse responses at point A due to distributed transverse forces; (b) In-plane responses at 
point A due to distributed transverse forces. 

When transverse forces with amplitude of 1 N/m are enforced onto the plates, vertical (or trans-
verse) displacements and longitudinal displacements are examined so as to evaluate whether our 
DSM can accurately reproduce bending and in-plane vibrations. Shown in Fig. 4 (a) are the results 
for the transverse displacement responses at point A over the frequency range of [0-1,000Hz], 
which are obtained by using our method and FEM, respectively. As we can see, there are discrepan-
cies in the resonance frequencies between them. When computation frequency is increasing, uncer-
tainties arise in FEM analysis, as a result, considerable variation in responses will appear due to 
slight variations in geometry, materials, boundary conditions, or even meshing schemes. Hence, 
despite discrepancies in resonance frequencies, it’s acceptable to find that the responses from FEM 
and from DSM have the same trend, and lie in the same level. 

Similarly, shown in Fig. 4 (b) is the comparison of the curves for the in-plane dynamic responses 
at point A obtained by using DSM and FEM. We can also find that our DSM results for the in-plane 
responses agree well with all FEM results except those obtained from the FEM model with 
0.2 0.2m m×  elements. Hence, from Fig. 4 (a) and Fig. 4 (b), we can deduce that our method can 
successfully present good results for both transverse and in-plane vibrations. Moreover, it is demon-
strated that the conversion from transverse vibrations to in-plane vibrations is correctly imple-
mented by using our DSM approach. 

In order to examine the capability of our method in dealing with higher frequencies, the fre-
quency range for vibration analysis is extended to [0-5,000 Hz]. When the computation frequency 
range is increasing, it’s reasonable to use larger truncation number N so that higher vibration modes 
can be superposed into overall dynamic responses. It is indicated that the results agree quite well 
over a very broad frequency range as much as 5,000 Hz. This capability is very appealing to scien-
tists who are struggling with the structural dynamics in medium or even high frequencies. 

 

 
(a) 
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(b) 

Fig.5 (a) Transverse responses at point A due to distributed transverse forces within 5,000Hz; (b) In-plane 
responses at point A due to distributed transverse forces within 5,000Hz. 

 

 
(a) 

 
(b) 

Fig.6 (a) Transverse responses at point A due to a unit concentrated force; (b) In-plane responses at point 
A due to a unit concentrated force. 

The second load case, which is illustrated in Fig. 3 (b), is designated to apply an unit concen-
trated force P2 with amplitude of 1N. It is shown in Fig. 6 that our results for the transverse and 
longitudinal displacements at point A agree well with those obtained by FEM below 1,000 Hz. We 
admit that there are some discrepancies in the resonance frequencies and vibration amplitude. How-
ever, our DSM results for the vibration displacements have the same trend with FEM results. 

In this subsection, through the above two cases, the capabilities of our DSM are validated. We 
can conclude that both bending vibrations and longitudinal vibrations can be accurately modelled 
by this method. The number of plate elements in the present solution is 19, while the number of 
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elements in the finite element models is respectively 7,020 and 28,084. Consequently, using the 
dynamic stiffness model significantly decreases memory requirement and computational time, and 
yet retaining high accuracy and high efficiency of the results. The comparison of computation be-
tween DSM and FEM is listed in Table 2. But we have to remind that convergence analysis with 
respect to different truncation numbers shall be made prior to using our DSM, especially in high 
frequency range. 

Table 2: Comparison of computation between DSM and FEM 

 Number of element Frequency range Computational time 
DSM 19 No frequency limit 10min within 10kHz  
FEM 7020/28084 Limited by high frequency 1.5h within 10kHz  

4. Conclusions 
By accounting for both in-plane and bending vibrations, the dynamic stiffness formulation for 

the plate structures, which are simply supported at their opposite edges, is used for vibration analy-
sis of a cabin structure which represents a portion of a ship foundation. Accurate results and consid-
erably higher efficiency are obtained, which demonstrates that our proposed DSM approach has 
great potentials in modeling the dynamics of complex built-up plate structures. This makes it possi-
ble to correctly address the wave conversions between in-plane and out-of-plane motions within 
plates. 

This work was financially supported by China Ship Scientific Research Center Fund (Reference 
No.: J1668). 
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