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The reliability analysis of stochastic nonlinear vibration system considering failure interaction 

under incomplete probabilistic information is performed. Firstly, the response of the stochastic 

vibration system is calculated by stochastic perturbation technique. Then, the performance func-

tions of the vibration system are defined according to the first passage theory. The reliability of 

marginal probability of failure is estimated based on the saddlepoint approximation and obtained 

moments of performance functions. The copula theory is adopted as a mathematical tool to model 

the dependency characteristic between each failure mode. The joint probability distribution func-

tions between failure modes are established by using Gaussian copula functions. The undeter-

mined coefficients in copula function are estimated using statistical approach. The method can be 

used for the system reliability analysis of stochastic nonlinear vibration system with dependent 

failure modes. 
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1. Introduction 

The reliability of engineering structures is the most important objective of structure design. How-

ever, uncertainties in material properties and structural geometry that due to the manufacturing error 

or structure complexities may influence the reliability of the structure. These uncertainties can be 

described as the mass, damping and stiffness. Generally, the uncertainties are considered as random 

variables or stochastic process. The study on the reliability of uncertain systems is a key issue during 

the design process. With the help of the reliability analysis, one can define the acceptable tolerances 

on structures and determine the range of the system parameters for safe operations.  

During the last decades, the reliability analysis methods for random structural systems are have 

been greatly developed [1-5]. However, the research on the random dynamic structural systems, that 

are far more complicated than static state systems, is still in the initial stage. Therefore, when it comes 

to the reliability analysis of multi-degree-of freedom nonlinear vibration systems with dependent fail-

ure modes, few literatures can be found.  

This paper presents a copula-based method for stochastic multi-degree-of-freedom nonlinear vi-

bration systems with dependent failure modes. The random responses of the stochastic vibration sys-

tems are formulated. The first four moments of the limit state function are derived by using random 

perturbation technique. Unknown distribution function of the limit state function is determined by the 

saddlepoint approximation method. The joint probability between pairs of failure mode is calculated 

by using the Gaussian copula. The system reliability of multi-degree-of-freedom nonlinear random 

structure vibration systems is then estimated with the reliability bound method. 
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2. The probabilistic response of the nonlinear random vibration sys-
tem 

The nonlinear equations of motion for random structure system can be expressed as [6] 

        , , , ,t f t M U x U U x x F U   (1) 

in which, M is the generalized mass matrix, f, x and F are the vector of the nonlinear function, dis-

placement and excitation forces, respectively. The superscript “  ” represents the first derivative of t. 

U is the vector of generalized coordinates, including the parameters of stochastic loads and structure. 

Suppose q is a function of matrix U, then the two order Taylor expansion of q at the mean value 

U can be expressed as 
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is a s-dimensional unit vector with unit value in the kth element and zero value elsewhere. sI  denotes 

the s×s unit matrix.  

Then, the matrices of both sides of Eq. (1) are expanded about U via Taylor series. By equating 

similar order terms, the zeroth-order, first-order, second-order equations corresponding to Eq. (1) can 

be obtained. According to the fourth-moment technique, the first four moments of the system re-

sponses are represented as 

  1 0 2u  x x x  (3) 
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in which  iu x  represent the first four moments of the system response. And the  Var csU ,  Tm csU ,

 Fm csU are the variance, the third central moment and the fourth central moment of the basic random 

variables, respectively. 0x  and 2x are the solutions of the zeroth order and second order equations 

corresponding to Eq. (1). 

3. Definition of the limit state functions 

The first passage failure of uncertain nonlinear MDOF system is defined as [6] 

  ,f  U x U x  (7) 

where U=(U1, U2,…, Un)
T is the threshold of system response x. And f(U, x) defines the state function 

of the nonlinear MDOF system while f(U, x)=0 represents the limit state function. The first four 

moments of the state function f(U, x) can be obtained as 



ICSV24, London, 23-27 July 2017 
 

 

ICSV24, London, 23-27 July 2017  3 
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4. System reliability analysis with dependent failure modes 

4.1 Marginal probability estimation by saddlepoint approximation 

The saddlepoint approximation is designed to calculate the cumulative distribution function (CDF), 

of the function Y=g (X). Suppose X is the vector of the basic random variables, fx(x) represents the 

probability density function of X, and MX(t) represents the moment generating function (MGF). Then, 

the MGF is expressed as  

       exp dM t t f



 X xx x x  (12) 

And the cumulative generating function (CGF) can be expressed as 

    lnK t M t   X X  (13) 
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x  denotes the mean value of system response x. Then, the first order 

Taylor series expansion of Y =g(U, x) at the mean value 
x
could be expressed as 
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The CGF of Eq. (14) can be obtained according to the functional properties discussed above. 
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According to the saddlepoint approximation theory [7], the PDF of Y is expressed as  
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in which YK   is the second-order derivative of the CGF of Y =g(U, x), ts is the saddle point with the 

single saddle point equation  

  YK t y   (17) 

in which YK   is the first-order derivative of the CGF of Y =g(U, x). 

The CGF of Y =g(U, x) is provided according to the saddlepoint approximation theory, 

        
1 1
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Eq.(18) is an exact approximation of the CDF of limit state function Y.    and     represents 

the CDF and PDF of a standard normal distribution function. Symbol w and v is expressed as  
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     
0.5

2s s Y sw sign t t y K t      (19) 

  
0.5

s Y sv t K t     (20) 

where sign is the sign function with sign(ts)= 1, -1, or 0 corresponding to the cases ts> 0, ts < 0, or ts 

= 0, respectively.. 

4.2 System reliability estimation using Gaussian copula  

The Gaussian copula belongs to the frequently used elliptical copula family, the bivariate Gaussian 

copula is defined as the joint normal CDF of standard normal variables [8,9]. 
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where    denotes the standard normal distribution,  1  is the inverse standard normal distribu-

tion. The correlation between  1 1u F G and  2 2v F G  is represented by the correlation parameter , 

which is restricted to the interval from -1 to 1. The cumulative density function and the probability 

density function of a Gaussian copula is plotted in figure 1. 

 

 

Figure 1: The PDF and CDF of a Gaussian copula. 

Based on the fact in the engineering application that random variables are frequently assumed to 

be normally distributed, the Gaussian copula could therefore be utilized to describe overwhelming 

majority reliability problem [9].  

To perform the joint failure probability estimation, the Gaussian copula parameter is firstly esti-

mated with the aforementioned Kendall rank correlation coefficient, and for Gaussian copula, it is 

simplified as  

 
2arcsin




  (22) 

With the known Kendall rank correlation coefficient, the parameter of the Gaussian copula can 

be easily estimated by equation (22). The parameter could indicate the degree of correlation between 

each pair of failure mode.  

The joint failure probability could then be calculated by the Gaussian copula with the estimated 

parameter and gives  

   , ;sin 2ijp C u v   (23) 

The narrow bound is obtained by calculating the failure probability of each component and joint 

failure probability of each pair of failure modes. With the procedure presented here, the component 

reliability analysis is conducted with the saddlepoint approximation. The joint probability is estimated 
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based on the copula concept and achieved by Gaussian copula. Thus, by integrating equation (18) and 

(23) into the narrow bound, we propose the copula-based narrow bound as  
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max , ,0 max ,
m i m m

f fi fi fj f fi fi fj

i j i i

P P C P P P P C P P


   

 
     

 
     (24) 

where  C   is selected as the Gaussian copula function. The system reliability could then be calcu-

lated with the copula-based narrow bound. 
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