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The presence of irregularity in a periodic structure results in the vibration localization which ex-
hibits locally large amplitude.  The combination of the vibration localization and a viscous damper 
can be one way to realize a fast damping of free vibration by intentionally creating a vibration 
mode which is strongly localized at the damper position.  This paper investigates the behaviour 
of a uniform tensioned string which is coupled to ground through homogeneously distributed 
stiffness and to a viscous damper at its centre, examining the effect of vibration localization on 
the damping performance.  Localization is induced by a concentrated mass that is attached to the 
string at the same point as the viscous damper.  In order to evaluate the rate of vibration decay, 
the characteristic equation is derived and the eigenvalue is computed by the Galerkin Method in 
which the mode of the string is represented by the superposition of a half sine wave and shape 
functions whose slope is discontinuous at the position of the added mass.  The results show that 
the added concentrated mass induces vibration mode which is strongly localized at the damper 
position, demonstrating improvement in damping performance with the increasing concentrated 
mass. 
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1. Introduction 

The structure consisting of almost identical subsystems exhibits a localized vibration mode de-
pending on the magnitude of the disorder present in the system [1].  The vibration localization is 
known to result in drastic change in vibration mode in many structural systems [1-6], but its effect on 
the damping characteristics of the system is not clear.  The aim of this paper is to examine the effect 
of vibration localization on the damping performance of free vibration. 

Hodges [2] investigated wave propagation in a vibrating string that is coupled to a number of 
constraints such as mass-spring systems placed at random intervals, and showed that wave transmis-
sions and reflections at the constraints lead to vibration localization when the wavelength is much 
smaller than the fluctuation of the constraint interval.  The effect of vibration localization on energy 
transmission has been examined by the analysis of a chain of pendula coupled by springs and been 
confirmed by a corresponding experimental system which comprises a tensioned string having small 
weights at slightly irregular intervals, concluding that vibration localization can give a significant 
decrease in transmitted energy [3].  Parameter criterion for predicting the occurrence of strong local-
ization in coupled pendula has been derived by Pierre and Dowell [1] by the modified perturbation 
method in which coupling strength as well as parameter variation is treated as a perturbation.  It 
should be noted that this perturbation approach provided an important physical account of vibration 
localization: Localized modes can be regarded as perturbed modes of an uncoupled disordered system 
where only one subsystem vibrates at its own natural frequency. 
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Localization of coupled beams has also been investigated [4-6].  Cha and Pierre [4] investigated 
the effects of coupling strength, coupling position, mode number and disorder strength on vibration 
localization which occurs in a large number of cantilever beams arranged in parallel and coupled by 
linear springs.  They revealed that effect of coupling becomes smaller as mode number is higher and 
coupling position is closer to vibration node, resulting in strong localization. Pierre et al. [5] examined 
vibration modes of a uniform pinned-pinned beam connected to ground at an intermediate point by a 
torsional spring, regarding it as a system constructed from two almost identical beams that are coupled 
in series.  They confirmed that the vibration mode is strongly localized when the stiffness of the spring 
is large and beam lengths are slightly different. Vibration mode of beams coupled in series by tor-
sional spring was calculated by Lust et al. [6], showing strong localization disappears in a certain 
range of the coupling parameter. 

In this paper, the effect of vibration localization on the damping performance is investigated.  The 
Galerkin method is applied to the free vibration analysis of a uniform tensioned string which is cou-
pled to ground by a viscous damper as well as homogeneously distributed stiffness.  The rate of the 
vibration decay is examined by evaluating the eigenvalue for the first mode of the system. 

2. Analysis 

2.1 Analytical model 

A schematic of the system under consideration is shown in Fig. 1.  A uniform string of length l , 
mass per unit length   and tension T  is coupled to ground by distributed stiffness of spring constant 
per unit length dk .  The string is placed along the x-axis and its deflection at a point x  and a time t  

is represented by ( , )u u x t .  To investigate the effects of mode localization on the damping perfor-
mance, an added concentrated mass m  and damper Pc  are attached to the string at the centre. 

By considering forces acting on a small element of the string as well as forces acting from the 
added concentrated mass and damper at / 2x l , the equation of motion of this system is derived as 

 
2 2 2

2 2 2
0

2d P
u u u u l

T k u m c x
tt x t

                    
, (1) 

where ( )   is Dirac’s delta.  This equation can be written as 
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where following variables and parameters are introduced: 
 

 
 

 
Figure 1: Analytical model. 
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Here,   is the mass ratio of the concentrated mass to the mass of the string, P  is a parameter indi-

cating the strength of the viscous damper,   and 0  are the first angular natural frequencies of the 

string when 0m   and 0dm k   , respectively,   is a parameter indicating the strength of the 

distributed stiffness.  It should be noted that t  is dimensionless time normalized by 0  whose value 

is independent of m  and dk , which means scale of the dimensionless time t  is influenced by nei-

ther of   and  .  
In addition, the boundary conditions on ( , )u u x t  are given by 

 (0, ) (1, ) 0u t u t  . (4) 

2.2 Application of the Galerkin method 

The Galerkin method is used to obtain ( , )u u x t  satisfying Eqs. (2) and (4).  Assuming the 
solution of the form 

 ( , ) ( ) tu x t U x e  (5) 

and substituting into Eq. (2) yield the following characteristic equation 

 2 2 2
2

1
( ) ( ) ( ) ( ) ( ) ( 1/ 2) 0PU x U x U x x      


      . (6) 

Here,   is an eigenvalue whose real part indicates the rate of free vibration decay per dimensionless 
unit time. 

When at least one of the concentrated mass or the damper is attached, the slope of the string be-
comes discontinuous at 1/ 2x   since the coefficient of Delta function in Eq. (6) has a nonzero value.  
Considering this discontinuity, solutions of the form 

 1 1 2 2 2 1 2 1
1

( ) ( ) { ( ) ( )}
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m m m m
m
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
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are assumed in the Galerkin Method.  Here, 1( )U x , 2 ( )mU x  and 2 1( )mU x  are the following shape 
functions: 
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where, 1, 2, , 1,m n n  .  Figure 2 illustrates the shape of these functions.  As shown in the figure, 

slope of the curves in 2 ( )mU x  and 2 1( )mU x  is discontinuous at 1/ 2x  , which allows precise 
representation of the localized mode and consequently accurate calculation of the eigenvalue  .  

Furthermore, 1( )U x  in Eq. (7) is necessary to allow the string to have a nonzero amplitude at 1/ 2x  , 
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Figure 2: Functions ( ) ( 1, 2, , , 2 1)pU x p n  . 

 
since both 2 ( )mU x  and 2 1( )mU x  are zero at 1/ 2x  .  ( )U x  given by Eq. (7) satisfies the bound-

ary conditions in Eq. (4), since 1( )U x , 2 ( )mU x  and 2 1( )mU x  are all zero at 0x   and 1x  . 

Eigenvalue   and coefficients 1 2 2 1, , , nc c c   are determined from following 2 1n   equations: 

 
1 2 2 2

20

1
( ) ( ) ( ) ( ) ( ) ( 1/ 2) ( ) 0P pU x U x U x x U x d x      


          

                                                                                                               ( 1, 2, , 2 1)p n  . (11) 

Then substituting the values of   and 1 2 3 2 1, , , , nc c c c   into Eqs. (5) and (7) yields the string de-

flection ( , )u x t .   
The larger the value of n  in the Galerkin Method, the more accurate the calculated results become.  

In this paper 50n   is chosen by trial and error.  All calculations in the following chapter are made 
for 4   which is randomly chosen, and the values of   and P  are shown together with each cal-
culated results.   

3. Results 

Effects of a concentrated mass on the mode shape in undamped free vibration is shown in Fig. 3.  
The figures illustrate the first mode shape of the string (a) without a concentrated mass and (b) with 
a concentrated mass of 0.05  .  We see that the vibration mode is a half sine wave in Fig. 3(a) 
which is the first mode shape of the string under the condition of 0P    where neither of the 
concentrated mass nor the damper is attached.  In contrast to this, the vibration mode in Fig. 3(b) is 
strongly localized at 1/ 2x   where the concentrated mass is attached, showing a dramatic change 
from the mode shape in Fig. 3(a).  As described in Section 2.2, the slope of the string becomes dis-
continuous due to the existence of Delta function when at least one of   or P  is not zero.  It is seen 
in Fig. 3(b) that the Galerkin Method formulated by Eqs. (6)-(11) represents well this discontinuity 
at 1/ 2x  . 

For reference, Figs. 4(a) and 4(b) illustrate the first mode shapes of the string in the condition when 
distributed stiffness is removed from Figs. 3(a) and 3(b), respectively.  We see that the vibration mode 
is not strongly localized in the absence of distributed stiffness, even in the case of 0.05  .  It should 
be noted that the slope of the string is discontinuous at 1/ 2x   in Fig. 4(b) since   has nonzero 
value, but this discontinuity is so small that it produces only a minor change in the mode shape from 
that shown in Fig. 4(a).  
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(a) String without a concentrated mass. 

 
(b) String with a concentrated mass of 0.05   at its centre. 

Figure 3: Mode of the string in case where distributed stiffness is present. 

 
 

 

   
(a) String without a concentrated mass 

 

  
(b) String with a concentrated mass of 0.05   at its centre. 

Figure 4: Mode of the string in case where distributed stiffness is absent. 
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Figure 5: Effect of a concentrated mass and damper on the damping performance for the first mode. 

 

Table 1: Improvement factor 0Re[ ] / Re[ | ]    for various values of   and P . 

Non dimensional 
concentrated mass 

  

 Damping strength P  

 0.005 0.010 0.015 0.020 

0.00  1.00 1.00 1.00 1.00 

0.02  1.31 1.32 1.32 1.33 

0.04  1.60 1.61 1.62 1.63 

 
 
Figure 5 shows the effect of the concentrated mass   on the rate of free vibration decay for several 

values of damper strength P .  The ordinate Re[ ]  of the figure represents the real part of the eigen-
value   for the first mode.  In the case of 0P  , the value of Re[ ]  is zero independently of   
since in this case there is not any damping component in the system.  When P  has a positive value, 
the value of Re[ ]  decreases with increasing  , which means that the occurrence of mode localiza-
tion is effective for improving the performance of the viscous damper. 

As for the effect of the damper strength, increasing P  decreases Re[ ]  in Fig. 5, intensifying the 
decreasing trend of Re[ ]  with increasing  .  To examine the effect of P  more closely, the ratio 
of Re[ ]  at 0   to that at 0   was calculated as an improvement factor for damping perfor-
mance and shown in Table 1.  It is seen that the dependence of the improvement factor on P  is small 
whereas the concentrated mass   has a great influence.  The 4 percent of the concentrated mass 
improves the damping rate of free vibration by a factor of approximately 1.6. 

4. Conclusion 

The effect of vibration localization on the damping performance has been theoretically investi-
gated using a uniform tensioned string with an added concentrated mass and a viscous damper at its 
centre.  The Galerkin Method has been formulated to calculate accurately the localized mode shape 
as well as the eigenvalue of the system whose real part indicates the damping rate of free vibration.  

The results have demonstrated that the vibration mode is strongly localized by attaching the con-
centrated mass when the string is coupled to ground through distributed stiffness.  In contrast, the 
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vibration mode is not localized when at least one of the concentrated mass or the distributed stiffness 
is absent. 

The calculation of the eigenvalue for the first mode has also been conducted in a certain range of 
the concentrated mass and for several values of the damping strength.  It has been clarified that the 
value of the real part of the eigenvalue decreases with the increase of the concentrated mass, which 
means the occurrence of the mode localization improves the performance of the viscous damper. 

The ratio of damping rate between the cases with and without the concentrated mass has been 
defined as an improvement factor for damping performance.  The results show that the concentrated 
mass has a great influence on the improvement factor, indicating the 4 percent of the concentrated 
mass improves the damping rate of free vibration by a factor of approximately 1.6. 
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