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Introduction

This paper is concerned with the prediction of the natural

frequencies and dynamic response of tower-shaped structures (i.e.

concrete chimneys, cooling towers. etc). The natural frequencies of

a simple conical-shell chimney are calculated using finite elemmt

and matrix progression methods. For the type of concrete structure

considered, damping has an important influence on the dynamic

response and the determination of the physical limping properties of

the concrete becomes necessary. General viscoelastic models are

proposed to represent the material damping. Experimental methods of

determining the damping properties of simple concrete specimens are

outlined. Once the material properties are known, the problem of

forced vibration due to wind, earthquakes. etc can be solved by

several methods. including the step-by-step method. This method is

described and discussed. .

Natural Frguencies of a Chimney Structure

By using the finite element displacement formulation the

equations of motion of an elastic structure reduce to the well known

eigenvalue problem for free vibrations, where F: and I! are the stiff-

ness and mass matrices.

5-m2s]u=g ...(1)

The stiffness and effective 'mass' matrices can also be

formed using the matrix progression method. The stiffness matrix

can be exact if suitable integration procedures are used. The mass

matrix is found by assuming that the difference between the static

and dynamic stiffness is proportional to m2. This results in a form-

ulation similar to the finite element method: the two can be combined 1

if the same degrees of freedom are used. The modes can be found

either by standard eigenvalue methods or by direct matrix progression.

A truncated conical shell approximating an actual chimney

structure is used to compare the adequacy of various structural ‘

models. Three types of finite element are used to represent this

cone: a uniform beam, a tapered beam and a conical shell. Using beam

and shell finite element programs, the natural frequencies of the

cone were computed. These are shown. together with natural frequencies

obtained using a matrix progression method based on thin shell theory,

in Table l. The table shows good‘ agreement between the finite _

element and matrix progression shell results and results obtained for
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a tapered Timoshenko beam. The stepped beam gives the fundamental

frequency quite accurately, but the higher frequencies are more widely

separated. For completeness a uniform Euler beam is used to represent
the shell. Its natural frequencies, computed using finite e'lement

methods, agree well with those obtained analytically, but, apart from
the fundamental, they do not correspond well with the shell theory

results.
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The accuracy of any finite element determination of the

natural frequencies and mode shapes of a structure depends on the
type and number of elements used to describe the structure. For
example. in the case of the uniform beam, the lower natural frequencies

can be computed quite accurately using only a few degrees of freedom.

However, the higher frequencies compare badly with the exact ones.
By increasing the number of degrees of freedom. the accuracy of the
higher frequencies can be improved.

hyping Properties of Concrete

No hypotheses can be made about the material behaviour of
concrete if the level of compressive stress is not too great. These
are thatconcrete behaves as a linear viscoelastic material and that
its Poisson's ratio can be considered as constant with time. These
hypotheses, together with the assumption that concrete is a homogeneous

isotropic material, allow its characterisation by a simple visco-
elastic model. In principle the model parameters can be determined
by a unisxial creep test but, because the model time constants are so
small, a dynamic test must be carried out in practice.

He'will here propose a simple general model for conrete which
utilises a combination of linear Kelvin and Maxwell elements. In most
practical cases the number of Maxwell elemnts required to represent
the material behaviour will be 1 or 2. If a steady state sinusoidal
stress of frequency a) is applied to unit volume of the material. then
the corresponding strain lags by the phase angle p where:

 

tan ¢= .. . (2)
2 I; Ckaso 9 ... Vkfll fi—zlI, w Tk

and
Th = (IR/ILk (3)

En, Eh, C0 and Ck are Viscoelestic model parameters.
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and in particular E0 is the Young's Modulus of the material. At a

resonant frequency of a structure, if the damping is small and purely

viscoelastit. it is possible to write

6=utan¢

where 6 is the logarithmic decrement.

By measuring the variation in damping with frequency of a

concrete specimen (in the form of a 5-u curve for a structure or a

¢-u curve for a material sample) it is possible to deduce the viscoe-

lastio model parameters Co, Ck and Ek.

The G-Lu curve is obtained by exciting a structure at its natural
frequencies and measuring the logarithmic decrement by any of the
recognised methods. The o-m curve can be obtained using'a programmed
testing machine. A prismatic specimen of concrete is subjected to a

sinusoidal forcing function and the strain output phase angle is

compared with it

Once the viscoelastic material model parameters are known,
we can use them to find the relaxation modulus C(t) or the creep

compliance J(t) of the material. These are used in the hereditary
integrals relating stresses and strains.

‘ a
m) = J C(t-r) id (4)

a .

Because of our suppositions of constant Poisson‘s ratio and an iso-

tropic material. these integrals can be extended to three-dimensional

material behaviour.
I

gm = Jan—1) [Jag—“ch (5)
D

where u is a matrix function of Poisson's ratio and o, c are stress

and strain vectors.

The well-known Kelvin model is the simplest material repre-

sentation from the structural viewpoint. Thismodel is equivalent to

assuming that the damping matrix is a linear function of the stiff-

ness matrix.

o=E°uE+cou§ ...(6)

For this case the modal superposition method is valid. In

general equation (6) does not reproduce the viscoelastic behaviour of

concrete correctly and a more complex model has to be used. For

these models the Step-by—step analysis, or a technique which allows

us to work in the complex plane, has to be used.

5 tep-bz-Step Analzs is

In the step—by—step method of integration the equations of

motion of a structure are solved by arranging them such that the

acceleration vector at the end of a time step is expressed in terms

vectors known at the beginning of the time step. The time step of

the integration method should be chosen to give stability as well as

adequate accuracy. All modes whose natural periods are less than or

close to the length of the time step will be suppressed. In thia.way

control over accuracy is obtained.

with the presence of linear viscoelaatic material damping,

it becoms necessary to assume a form for the variation of acceleration
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with time. To test the stability and accuracy of various integration
methods a uniform elastic cantilever been subject to a transient end
load was used as a test case, for which there is available an exact
solution. The equations of motion were established using both finite
difference and finite element methods. Among the acceleration
variations taken, the most stable was obtained using 8 = l in the
Newmark B mthod [I] .

For linear viscoelastic material behaviour, using the Newmark
method to perform the integration, the equations of motion can be
written in the form of a recurrence law and a complete record of the

strain history of the material is not required. The constitutive
equation of a linear viscoelastic material model can be expressed as:

a: at
t

o=Boz * COR 9 I: it I e-(t—r)/'l:k37 d1 (7)

D

The equations of motion can be written, using (7) and the
finite element displacement formulation, as:

if I]: = P3 (I) _ (gt Yt—h l:It-h Pt-h 9k. t-h) (a)

where Fe (t) is an external force vector.

l?i is an internal force vector.

fit and iirh are acceleration vectors at times t and t-h.

9H]. grh and 9k.t_h are velocity, displacement and viscoelastic
vectors respectively.

.. The first step in the computer algorithm is to solve equations
(5) for y: with t-h and initial values of velocity. displacement
vectors etc. at time t=o. The new set of vectors are then computed

for time h and equations (8) are solved for t=t+h. This process is
repeated for the duration of the excitation.

Conclusions

By representing concrete as a linear viscoelastic material
and by using a suitable structural idealisaticn, the dynamic response
of tower-shaped structures can be computed bya atep-hy-step method

which is both stable and accurate.
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