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Introduction

This paper is concerned with the prediction of the natural
frequencies and dynamic respouse of tower—shaped structures (i.e.
concrete chimmeys, cooling towers, et¢). The natural frequencies of
a simple conical-shell chimmey are czlculated uging finite element
and matrix progression methods. For the type of concrete structure
considered, damping has an important influence on the dynamic
response and the determination of the physical damping properties of
the concrete becomes necessary. General viscoelastic models are
proposed te represent the material damping. Experimental methods of
determining the damping properties of simple concrete specimens are
gutlined. Once the material properties are known, the problem of
forced vibration due to wind, earthquakes, etc can be solved by
several methods, including the step-by-step method. This method is
described and discussed. .

Natural Frequeccies of a Chimey Structure

By usinog the finite eloment displacement form:lation the
equations of motion of ar elastic structure reduce to the well known
eigenvalue problem for free vibrations, where K and M are the stiff-
ness and mass matrices.
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The stiffness and effective 'mass’ matrices can alse be
formed using the matrix progressiom method. The stiffness matrix
can be exact if suitable intepgration procedures are used. The mass
matriz is found by assuming that the difference between the static
and dynamic stiffoess is proportiomal to wl. This results ic a form
ulation similar to the finite element method: the two ¢an be combined
if the same degrees of freedom are used. The mdes can be found
either by standard eigenvalue methods or by direct matrix progressiom.

A truncated cenical shell approximating an 2ctual chimmey
structure is used to compare the adequacy of various structural
models. Three types of finite element are used to represent this
cone: a uniform beam, a tapered beam and a conmical shell. Using beam
and shell finite element programs, the natural frequencies of the
cone were computed. These are shown, together with natural frequencies
obtained using a matrixz pragression method based on thin shell theory,
in Table 1. The table shcws good agreement between the finite
element and matrix progression shell results and results obtained for
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a tapered Timoshenko beam.
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The stepped beam gives the fundamental

frequency quite accurately, but the higher frequencies are more widely

separated .

For completeness a uniform Euler beam is used to represent

the shell. Its natural frequencies, computed using finite element
methods, agree well with those obtained analytically, but, apart from
the fundamental, they do¢ not correspond well with the shell theory

results.
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The accuracy of any finite element determination of the
natural frequencies and mode shapes of a structure depends on the
type and number of elements used to describe the structure.

example, in the case of the uniform beam, the lower natural frequencies

For

can be computed quite accurately using only a few degrees of freedom.
However, the higher frequencies compare badly with the exact cnes.
By increasing the number of degrees of freedom, the accuracy of the

higher frequencie
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5 can be improved.

s of Concrete

Two hypotheses can be made about the material behaviour of

concrete if the level of compressive stress is not too great.

These

are thatconcrete behaves as a linear viscoelastic material and that

its Poisson's ratio can be considered as constant with time.

These

hypotheses, together with the assumption thatconcrete i8 a homogeneous
isotropic material, allow its characterisation by a simple visce-
elastic model. In principle the model parameters can be determined
by a unisxial creep test but, because the model time constants are seo
small, a dynamic test must be carried out in practice.

We ‘'will here propose a simple general model for conrete which

utilises. a combinatiom of linear Kelvin and Maxwell elements. In most
practical cases the number of Maxwell elements required to represent

the material behaviour will be 1 or 2.

If a steady state sinusoidal

stress of frequency w is applied to unit volume of the material, then
the corresponding strain lagd by the phase angle ¢ where:
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are viscoelastic model parameters.
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and in particular Eg is the Young's Modulus of the material. &t a

resonant frequency of a structure, if the damping is small and purely
viscoelastic, it is possible to write

6§ =m tan ¢

where & is the logarithmic decrement.

By measuring the variation in damping with frequency of a
concrete specimen (in the form of a &-w curve for a structure or a
¢-w curve for a material sample) it is possible to deduce the viscoe-
lastic model parameters Cor G and Ek'

The 6-w curve is obtained by exciting a structure at its natural
frequencies and measuring the logarithmic decrement by any of the
recognised methods. The ¢-w curve can be obtained using a programmed
teating machine. A prismatic specimen of concrete is subjected to a
sinusoidal forcing function and the strain output phase angle is
compared with it.

Once the viscoelastic material model parameters are known,
we can use them to find the relaxation modulus G{t) or cthe creep
compliance J(t) of the material. These are used in the hereditary
integrals relating stresses and strains.

£ 3
ale) = J G(t-1) ﬁd 3
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Because of our suppositions of constant Peisson's ratio and an iso-
tropic material, these integrals can be extended to three-dimensional
material behaviour.

t
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o
where p is a matrix function of Poisson's ratio and ¢, £ are stress
and gtrain vectors. -

The well-known Kelvin model is the simplest material repre-
sentation from the structural viewpoint. This model is equivalent to
assuming that the damping matrix is a linear.function of the stiff-
ness matrix.

c=E ue+C oué e (6)

For this case the modal superposition method is valid. In
general equation (6) does not reproduce the viscoelastic behaviour of
concrete correctly and a more complex model has to be used. For
these models the step-by-step analysis, or a technique which allows
us to work in the complex plane, has to be used.

Step-by=-Step Analysis

In the step-by-step method of integration the equations of
motion of a structure ate solved by arranging them such that the
acceleration vector at the end of a time step is expressed in terms
vectors konown at the beginning of the time step. The time step of
the integration method should be chosen to give stability as well as
adequate accuracy. All wodes whose natural periods are less tham or
clogse to the length of the time step will be suppressed. In this.way
control over accuracy is chtained.

With the presence of linear viscoelastic material damping,
it becomes necessary to assume a form for the variation of acceleration
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with time, To test the stability and accuracy of various integration
methods a uniform elastic cantilever beam subject to a transient end
load was used as a test case, for which there is azvailable an exact
solution. The equations of motion were established using both finite
difference and finite element methods. Among the acceleration

variations taken, the most stable was obtained using £ = } in the

Newmark B method [1] . |

For linear viscoelastic material behaviour, using the Newmark

method te perform the integration, the equations of motion can be 1
written in the form of a recurrance law and a complete record of the
strain history of the material is not required. The comstitutive
equation of a linear viscoelastic material model can be expressed as:
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Therequaticns of motion can be written, using (7) and the
finite element displacement fermulation, as:

MB, = B, - O Y 0 0enQ, c-n) o ®
where Fe (t} is an external ferce vector.
F. is an internal force vector.
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ﬁt and ﬁt-h are acceleration vectors at times t and t-h.

g _.,U and Q , are veleocity, displacement and viscoelastic
-t=h’ _t-h k't .
vectors respectively.

.. The first step in the computer algorithm iz to solve equations
(8) for U, with t-h and initial values of wvelocity, displacement

vectors etc. at time t=o. The new set of vectors are then computed

for time h and equationa (8) are solved for t=t+h. This process is
repeated for the duration of the excitatiom.

Conclusions

By representing concrete as a linear viscoelastic material
and by using a suitable structural idealisation, the dynamic response
of tower-shaped structures can be computed by a step-by~step method

which is both stable and accurate.
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