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Phononic crystals are widely researched and applied nowadays. Their dynamical performance 

need to be investigated for the purpose of design and optimization. In this paper, wave finite 

element method (WFEM) is employed to acquire the vibration band gaps of one-dimensional 

phononic crystals. Because of the periodic characteristics of the phononic crystals, only one unit 

cell needs to meshed, the FE model in which the mass and stiffness matrices are typically ex-

tracted using a conventional FE package. Band gaps can be obtained from the eigenvalues of the 

segment transfer matrix, other properties of the structures are also derived from the formulation. 

Some numerical results are presented and compared with theory results, a good agreement is ob-

served. This work provides an effective technique to analyse the dynamical characteristics of 

metamaterial structures. 
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1. Introduction 

The study of phononic materials and structures is an emerging discipline that lies at the crossroads 

of vibration and acoustics engineering and condensed matter physics. One-dimensional phononic 

crystals that can be obtained by repeating a single unit cell are widely employed in various engineer-

ing domains. The wide application and rich dynamic behaviours of phononic crystals have attracted 

lots of researches in these years[1]. 

In recent years, the field of periodic structure has experienced a resurgence with the introduction 

of phononic crystals, the band gap and cavity mode in phononic crystal strip waveguides was studied 

by Li [2]. The application of the phononic crystals is also widely, Yanfei Li[3] controlled the low-

frequency noise by design the acoustic metamaterials successfully. 

In this paper, we study three types of vibration band gaps of one-dimensional phononic crystals. 

In section 2, finite element displacement method is employed to obtain the mass and stiffness matrices 

of the structures. The formulation of WFEM on one-dimensional phononic crystals is proposed in 

section3. Results and discussions of the band structure are presented in section 4. A short summary 

is given in section 5. 

2. Finite element method for modelling 1D structures 

In order to calculate the dynamic properties of the phononic crystals, the mass and stiffness matri-

ces of unit cell must be obtained.  

This section describes how to obtain the mass and stiffness matrices of one-dimensional single 

element by finite element displacement method[4]. 

All vibration modes of one-dimensional element are given in Fig.1. Axial vibration mode is shown 

in Fig.1a, torsional vibration mode is shown in Fig.1b and bending vibration mode is shown in Fig.1c.  
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        a) Axial                                b) Torsional                               c) Bending 

Figure 1 Vibration modes of one-dimensional element 

2.1 Axial vibration 

The deformation of an axial element is: 

    1 1 2 2u N u N u     (1) 

where 

      1 2

1
1    1, 1

2
i i            (2) 

The expression Eq. (1) can be rewritten in matrix form as follows: 
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where the shape function of the axial element is: 
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The energy expressions for the single element shown in Fig.1a are: 
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Substituting the displacement expression into the kinetic energy and the strain energy gives: 
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where 
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Which is referred to as the ‘element mass matrix’, 
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where 
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Which is referred to as the ‘element stiffness matrix’. 

2.2 Torsional vibration 

The energy expressions for the single torque element shown in Fig.1b are: 
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The highest derivative appearing in these expressions is the first rotation about the x-axis,  the 

variation of which is the same as the variation of u for an axial element. Which means the shape 

function of the torque element is also: 

      1 2

1
1    1, 1

2
i i            (11) 

The mass matrix and stiffness matrix of the single torque element can obtained by replacing A , 

EA by xI , GJ  respectively： 
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2.3 Bending vibration 

The deformation of a bending element is: 

    
e
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where 
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The shape function of the bending element is: 
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The energy expressions for the single element shown in Fig.1c are 
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Substituting the displacement expression into the energy expression gives the element mass matrix 

and the element stiffness matrix: 
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3. The formulation of proposed WFEM on 1D phononic crystals 

The unit cell that forms the periodic structures is discretized by the Finite Element method. The 

mass and stiffness matrices M and K of the unit cell can be calculated by the shape function men-

tioned in section 2 or extracted from commercial FE package[5]. 

The nodal DOFs are defined as in Fig.2, which divided into: left right and internal DOFs. They 

are classified as  L I Rq q q .  

 

Figure 2 Mesoscopic scale of the unit cell 

The nodal forces are classified in the same way. 
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3.1 Dynamical equation 

As we all know, the dynamical equation expression for the unit cell shown in Fig.2 is: 

  2K+ C M fi q     (18) 

In this paper, we ignore the damping of the structure, which means C=0 .The dynamical equation 

of the unit cell can rewritten in the form: 

 2

K K K M M M f

K K K M M M f

K K K M M M f

LL LI LR LL LI LR L L

IL II IR IL II IR I I

RL RI RR RL RI RR R R

q

q

q



        
       

        
               

  (19) 

 

For free wave propagation, the internal force is zero, so f 0I  . 

3.2 Boundary conditions of the periodic structure 

For 1D phononic crystals, the wave motion is characterized by the relationship between the bound-

ary nodal DOFs and nodal forces of two adjacent unit cells. According to periodic structures theory, 

the DOFs are related as follows: 

 q qR x L   (20) 

In addition, for free wave propagation, the sum of nodal forces of all elements connected to left 

nodal is zero, which leads to: 

 
1f f 0L x R     (21) 

3.3 The WFEM formulation[6] 

According to Eq. (20)，the DOFs of the unit cell  L I Rq q q can be related to  L Iq q  using

R , that is: 
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where 
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The sizes of Lq , Iq are L and I respectively. The matrices IL  and I I in R  represents the identity 

matrix of size L and I. 

Similar to the force DOFs, according to Eq.(21): 
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Then Eq. (19) can be rewritten as: 
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This expression includes two parameters   and x , here x  is fixed, and the value of   are 

sought. Eq. (26) becomes a standard and linear eigenvalue problem of 2  as follows: 

     2K M =0
L

x x
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where 
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3.4 Band gaps and wave shape 

Vibration band gaps is one of the most representative dynamical performance of the phononic 

crystals. For a 1D phononic crystals, the irreducible zone of the 1st Brillouin zone is obvious. If the 

lattice constant of 1D phononic crystals is a , then the wave number  ,xk a a   . The transmis-

sion coefficient =e jka

x
  is then obtained. 

The mass and stiffness matrices M and K are symmetric positive definite matrices, in addition the 

matrix L is the conjugate transpose of the matrix R , thus the matrices  K x  and  M x  are pos-

itive definite Hermitian matrices.  

Substituting the transmission coefficient x into Eq. (27)，the eigenvalue problem leads to the 

solutions  2   , with 2 real and positive, and vectors   orthogonal. The eigenvalue 2 give the 

frequency ranges of propagative wave. The eigenvectors  include only L Iq q , the wave shape  

for the phononic crystals are obtained by multiplying R : 
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4. Application example 

In this section, the WFEM is applied to 1D phononic crystals. The vibration band gaps of the 

phononic crystals is obtained, the band gaps result is compared with the theory result, a good agree-

ment is observed. 

4.1 Axial vibration phononic crystal 

An axial vibration phononic crystal is shown in Fig.3. The axial vibration beam is combined by 

two beams A and B. Beam A and beam B have the same diameter 0.005m, the same length 0.075m , 

their material are aluminum and epoxy respectively.  

Lattice constant of this phononic crystal is 0.15m, the diameter of two beams is far less than the 

lattice constant, and only the axial vibration is considered here. 

 

Figure 3 Axial vibration beam 

Band structure of axial vibration phononic crystal is calculating by WFEM, and the result is shown 

in Fig.4. 
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Figure 4 Band structure of axial vibration beam 

The WFEM results are compared with the theory results, which is shown in Tab.1. 

Table 1 Axial vibration band gap results 

Axial vibration Band gap 1 (kHz) Band gap 1 (kHz) 

WFEM 4.97-12.07 14.5-23.63 

Theory 5.0-12.2 14.6-23.7 

Error -0.83% -0.49% 

It can be seen from Tab.1, a good agreement between WFEM results and theory results is observed.  

4.2 Torsional vibration phononic crystal 

A torsional vibration phononic crystal is shown in Fig.5. The torsional vibration beam is combined 

by two beams A and B. Beam A and beam B have the same ellipse cross section with the semi-major 

length 0.0707m and the semi-minor length 0.005m , the same length 0.075m , their material are alu-

minium and epoxy respectively.  

Lattice constant of this phononic crystal is 0.15m, the diameter of two beams is far less than the 

lattice constant, and only the torsional vibration is considered here. 

 

Figure 5 Torsional vibration beam 

Band structure of torsional vibration phononic crystal is calculating by WFEM, and the result is 

shown in Fig.6. 

 

 

Figure 6 Band structure of torsional vibration beam 
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The WFEM results are compared with the theory results, which is shown in Tab.2. 

Table 2 Torsional vibration band gap results 

Torsional vibration Band gap 1 (kHz) Band gap 1 (kHz) Band gap 3 (kHz) 

WFEM 2.83-6.89 8.27-13.58 15.02-18.44 

Theory 2.84-6.91 8.29-13.47 14.99-18.34 

Error -0.32% 0.29% 0.37% 

It can be seen from Tab.2, a good agreement between WFEM results and theory results is observed.  

4.3 Bending vibration phononic crystal 

A bending vibration phononic crystal is shown in Fig.7. The bending vibration beam is combined 

by two beams A and B. Beam A has a rectangular cross-section with the width 0.01m and the height 

0.01m, beam B has a rectangular cross-section with the width 0.01m and the height 0.005m, beam A 

has a length 0.05m, beam B has a length 0.02m, their material are aluminium and organic glass re-

spectively.  

Lattice constant of this phononic crystal is 0.07m, the size of two beams is far less than the lattice 

constant, and only the bending vibration is considered here. 

 

Figure 7 Bending vibration beam 

Band structure of torsional vibration phononic crystal is calculating by WFEM, and the result is 

shown in Fig.8. 

 

 

Figure 8 Band structure of bending vibration beam 

The WFEM results are compared with the theory results, which is shown in Tab.3. 
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Bending vibration Band gap 1 (kHz) Band gap 1 (kHz) Band gap 3 (kHz) 

WFEM 523.6-1414.6 3.38-13.87 18.12-19.47 

Theory 460-1390 3.2-12.58 / 

Error 1.77% 5.6% / 

It can be seen from Tab.3, a good agreement between WFEM results and theory results is observed. 

As a conclusion, three types of vibration mode of the phononic crystals are all proceeded by 

WFEM, and the results are compared with the theory results, a good agreement is observed. Which 
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means WFEM can be an effective instrument in calculating the vibrations band gaps of one-dimen-

sional phononic crystals. 

5. Conclusions 

This paper employs the wave finite element method to acquire the vibration band gaps of one-

dimensional phononic crystals. The mass and stiffness matrices of one-dimensional single element 

are proceeded by finite element displacement method. The formulation of WFEM on one-dimensional 

phononic crystals is provided. Three types of vibration mode of the one-dimensional phononic crys-

tals are obtained by WFEM, the band gaps results are compared with the theory results, a good agree-

ment is observed. 

This work provides an effective technique to analyse the dynamical characteristics of metamaterial 

structures. Future investigations will address to the application of the WFEM on two-dimensional 

phononic crystals or more complex structures. 
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