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A mapping relationship based near-field acoustic holography was proposed previously. It requires 

an enclosing measurement to form the unique mapping relationship between the vibrating struc-

ture and the hologram. A guideline was developed to choose the necessary number of the funda-

mental solution as well as set up the microphone array in an optimized way. The NAH is an 

inverse problem and thus poses significant challenges to the stable and accurate solution. And, a 

practical measurement is prone to errors and always incorporates uncertainties, such as random 

fluctuations, effect of rapid decay of the evanescent waves. To investigate the influence of errors 

on the performance of the MRS-based NAH, the errors are divided into two parts. One is trunca-

tion error introduced in the modal decomposition, and another one is the noise included in the 

experiment. An expression of the relative error of the reconstructed pressure energy is derived 

based on the two types of errors. An approach is developed to estimate the lower and upper bounds 

of the relative error. It gives a guide to predict the error for a reconstruction under the condition 

that the truncation error and the signal-to-noise ratio are given. Numerical examples with different 

kinds of errors are elaborately designed to validate the stability as well as the correctness of the 

error analysis. At last, the MRS-based NAH is further examined and verified by a physical exper-

iment. A satisfied agreement with the directly measured pressure on a validation surface is ob-

served for both quantity and distribution of the reconstructed pressure. 

 
 Keywords: near-field acoustic holography, mapping relationship, experimental study, spherical funda-

mental solutions 

 

1. Introduction 

Near-field acoustic holography (NAH) is an effective tool to reconstruct the interested acoustic 

quantities (e.g. sound pressure, particle velocity) based on a number of measurements at a close dis-

tance to a structure which are typically returned by an array microphones or probes. As is well known, 

it is usually claimed as an ill-posed problem in the sense of Hadamard [1], i.e. it may have no solution 

at all or the solution may not be unique and it may be extremely sensitive to slight errors in the input. 

It is due to that the inverse operator is ill-conditioned, e.g. subject to larger condition number, which 

are generally caused by the over selected basises in either numerical or analytical form for the de-

scription of acoustic quantities on the surface of structure or hologram. 

To circumvent this issue, regularization methods were introduced to the NAH. The prevailing ap-

proach goes to the popular Tiknonov regularization which controls the solution by balancing the fi-

delity term and the regularization errors [1-5]. Thus, several strategies had been developed to properly 
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determine the regularization parameter, such as generalized cross validation (GCV) [6] and the L-

curve [7], etc. However, at present, there is still no absolutely universal method that is robust enough 

and always produces a good regularization parameter. Sometimes the very ill-posed inverse operator 

makes the regularization a real difficulty, and in turn is very urgent to need a proper regularization 

method. The ill-poseness is even more serious for incomplete measurement regardless the types of 

NAH adopted, such as the attempts to reconstruct the acoustic quantities on a three dimensional struc-

ture from one or several non-enclosing holograms. While the exact solution is possible to be obtained 

for the inverse operation from a measurement on a complete hologram enclosing the vibrating struc-

ture [8, 9]. It is the measurement that can form a unique one-to-one mapping relationship between the 

surface of structure and hologram [10]. 

Few works are devoted to the error analysis of the NAH by comparing with that for the regulari-

zation methods. It is because the NAH was usually viewed as a very ill-posed inverse problem for 

which obtaining a regularized solution is the primary task. Thus, it is difficult to predict or estimate 

the reconstruction accuracy. Instead of a predictable way, numerical simulation and experimental 

validation are two frequently adopted methods to investigate the performance of NAH for different 

parameters [11-13]. For practical problems, it is hard to estimate the accuracy of the reconstructed 

results. In this work, the error analysis and experimental study of the MRS-based NAH [10] are re-

ported.  

2. Error analysis of the MRS-based NAH 

On the holograms, the error included pressure is simply modelled as 

p(𝐱) = p0(𝐱) + n(𝐱), or 𝐏 = 𝐏0 + 𝐧 (1) 

, where 𝐏𝟎 represents the source pressure and 𝐧 is the noise terms. Denote the signal to noise ratio 

(SNR) on the hologram as 

SNR = 10 log10
𝑊𝑃0

𝑊𝑁𝑜𝑖𝑠𝑒
= 10 log10

∫ |P0(𝐱)|2
𝑆ℎ

𝑑𝑆(𝐱)

∫ |n(x)|2
𝑆ℎ

𝑑𝑆(𝐱)
  (2) 

, where 𝑊𝑃0
 and 𝑊𝑁𝑜𝑖𝑠𝑒 represent energies of source pressure and noise pressure, respectively. Under 

the condition that the source pressure and noise pressure can be completely decomposed by a set of 

normalized modes, the SNR can be reformatted by the Parseval law as  

SNR = 10 log10

‖𝛂0‖2
2

‖𝛂𝑁𝑜𝑖𝑠𝑒‖2
2 (3) 

in which 𝛂0 and 𝛂𝑁𝑜𝑖𝑠𝑒 are coefficients of the locally normalized orthogonal patterns on the hologram 

for the source pressure and noise term, and correspondingly the coefficients for pressure 𝐏 is 𝜶 =
𝛂0 + 𝛂𝑁𝑜𝑖𝑠𝑒. 

The participant coefficients of the FS modes 𝑆𝑖 (Eq.(4) in Ref. [14]) can be obtained indirectly as  

𝜆𝑖 = ∑ 𝑅𝑖𝑗𝛼𝑗
∞
𝑗=𝑖  or 𝛌 = 𝐑𝜶 (4) 

in which 

𝛼𝑗 = 〈𝑝(𝐱), 𝑒𝑗(𝐱)〉𝑆ℎ
 (5) 

are participant coefficients for the normalized and orthogonal modes 𝑒𝑗(𝐱), and the normalized mode 

is related to the FS by 

𝐄 = 𝐒𝐑 (6) 

, where the orthogonal and normalized modes 𝐄 = [𝑒1(𝐱), 𝑒2(𝐱), ⋯ ] ,  𝐒 = [𝑆1(𝐱), 𝑆2(𝐱), … ] =
[𝑆0

0(𝐱), 𝑆1
−1(𝐱), 𝑆1

0(𝐱), ⋯ ] is a row lined FS and 𝐑 is an upper triangular square matrix.  

Once the participant coefficients is obtained on the hologram, reconstruction process is a simple 

series evaluation as 
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𝑝(𝐱) = ∑ 𝜆𝑖𝑆𝑖(𝑘, 𝐱)∞
𝑖=0  for 𝐱 ∈ Γ or 𝐩Γ = 𝑺Γ𝝀 (7) 

where 𝐩Γ and 𝑺Γ are reconstructed pressure and FS on the surface of the vibrating structure, respec-

tively. Decompose the FS on the surface of vibrating structure 𝑺Γ as 

𝑺Γ = 𝐄Γ𝐑Γ
− (8) 

where 𝐄Γ is the column normalized modes on the surface of vibrating structure, and 𝐑Γ is a transla-

tion operator which is an upper triangular square matrix. Reconstructed sound pressure on the surface 

of the vibrating structure, can be expressed as 

𝐩Γ = 𝐄Γ𝐑Γ
−𝐑𝜶 (9) 

According to the Parseval law, the reconstructed pressure energy on the surface of vibrating struc-

ture is  

𝑊𝑃Γ
= ‖𝐑Γ

−𝐑𝜶‖2
2 = 𝜶∗𝐓𝐑𝜶 (10) 

, where 𝐓𝐑 = 𝐑∗𝐑Γ
−∗𝐑Γ

−𝐑 is a Hermitian matrix. Therefore, there is an eigendecomposition of 𝐓𝐑 =
𝐐∗𝚲𝐐 in which 𝐐 is a unitary complex matrix whose columns comprise an orthonormal basis of the 

eigenvectors of 𝐓𝐑, and 𝚲 is a real diagonal matrix whose main diagonal entries are the corresponding 

eigenvalues. Assume the eigenvalues are sorted in a descending order, such as Λ𝑖 ≥ Λ𝑗 for 𝑗 > 𝑖. The 

lower and upper bounds of the reconstructed pressure energy are easy to be obtained  

Λ𝑑‖𝜶‖2
2 ≤ 𝑊𝑃Γ

≤ Λ1‖𝜶‖2
2 (11) 

, where 𝑑 is the dimension of the matrix. In practice, the relative error of reconstructed pressure en-

ergy on the surface of the vibrating structure is more concerned. Obviously, the bounds of the exact 

pressure energies 𝑊𝑃0,Γ
 and noise generated pressure energies 𝑊𝑃Noise,Γ

 can be obtained with coeffi-

cients 𝜶 replaced with 𝜶0 and 𝜶𝑁𝑜𝑖𝑠𝑒 in Eq. (11), respectively. Thus, bounds for the relative errors 

𝜀𝑊Γ
= 𝑊𝑃Noise,Γ

/𝑊𝑃0,Γ
 are 

𝑐𝑜𝑛𝑑(𝐓𝐑)−10−𝑆𝑁𝑅/10 ≤ 𝜀𝑊Γ
≤ 𝑐𝑜𝑛𝑑(𝐓𝐑)10−𝑆𝑁𝑅/10 (12) 

where 10−𝑆𝑁𝑅/10 = ‖𝜶𝑁𝑜𝑖𝑠𝑒‖2
2/‖𝜶0‖2

2 , and 𝑐𝑜𝑛𝑑(𝐓𝐑) = 𝜦1/𝚲𝑑  is the condition number of the 

translator matrix 𝐓𝐑. Eq. (12) can be rewritten as 

𝑆𝑁𝑅 − 10 log10 𝑐𝑜𝑛𝑑(𝐓𝐑) ≤ 𝑆𝑁𝑅Γ ≤ 𝑆𝑁𝑅 + 10 log10 𝑐𝑜𝑛𝑑(𝐓𝐑) (13) 

in which 𝑆𝑁𝑅Γ = −10 log10 𝜀𝑊Γ
 is the signal to noise ratio of the reconstructed pressure on the 

model’s surface. 

Above analysis is based on an assumption that the pressure can be completely decomposed by a 

set of modes. Otherwise, the Parseval law cannot be applied equivalently in evaluating the pressure 

energy. However, the complete set of modes is hardly to be satisfied in decomposing the radiated 

pressure of a realistic radiator, alternatively an incomplete set is applied to approximately decompose 

the radiated pressure within a given tolerance. Therefore, a compromise on accuracy and robustness 

is made by truncating the series expansion, Eq.(7), with a proper number N. Due to the truncation, 

the measured pressure energy evaluated by the modal decomposition method on holograms is not 

equal to the true quantities, and so is the noise energy.  

Suppose the exact pressure on the surface of the vibrating structure is 𝑝0,Γ and the corresponding 

reconstructed pressure is 𝑝Γ. Therefore, the relative error of the reconstructed pressure energy is  

𝜀𝑊Γ
=

‖𝐩0,Γ−𝐩Γ‖
2

2

‖𝐩0,Γ‖
2

2   (14) 

According to the derivation in the appendix in the Ref. 15, the relative error 𝜀𝑊Γ
 can be expressed as 

𝜀𝑊Γ
(𝑐1, 𝑐2, 𝑐3, 𝑐4) =

𝑐4+𝑐310−𝑆𝑁𝑅/10+𝑐1√𝑐4√𝑐310−𝑆𝑁𝑅/20

1+𝑐4+𝑐2√𝑐4
  (15) 

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
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It reaches the lower bound at 𝑐1 = −2 and 𝑐2 = 2, and the upper bound at 𝑐1 = 2 and 𝑐2 = −2. How-

ever, Eq. (15) is a nonlinear function for variables 𝑐3. A constrained nonlinear optimization algorithm 

is adopted to find the lower and upper bounds, as the minimum of a problem specified by 

min
(𝑐3)

𝑓(𝑐3) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑑(𝐓𝐑)− ≤ 𝑐3 ≤ 𝑐𝑜𝑛𝑑(𝐓𝐑) (16) 

, where the objective function is 

𝑓(𝑐3) = {
 𝜀𝑊Γ

(−2,2, 𝑐3, 𝑐4),             𝑓𝑜𝑟 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

−𝜀𝑊Γ
(2, −2, 𝑐3, 𝑐4), 𝑓𝑜𝑟 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

 (17) 

In the above analysis, the variables SNR and 𝑐4 are supposed to be given. The SNR of the envi-

ronment can be estimated by measurement. For the ideal case in which there is no noise included, 

equivalent to SNR = ∞, the lower bound of the relative error is easy to be obtained as 

𝜀𝑊Γ
≥

𝑐4

1 + 𝑐4 + 2√𝑐4

 (18) 

, which is only related to the 𝑐4 and in turn related to the number of adopted participant modes. The 

actual reconstructed error of a realistic problem or a case with small SNR is not expected to have a 

lower bound less than that estimated for no noise included case. Thus, the lower bound of the recon-

structed pressure energy can be estimated by Eq. (18). 

3. Numerical Simulations 

In this section, numerical examples are set up to investigate the performance of the MRS-based 

NAH on different types of measurement configurations with noise included. In the following simu-

lations, the edge length of the cube is set as 𝑎 = 0.2 m as shown in Figure 2. The setup is schemati-

cally illustrated in Figure 1, the spherical hologram is away from the equivalent radius 𝑟̃ = √𝑆/4𝜋 

where 𝑆 is the area of the cubic model by Δ. 

hr

D

r~

a

 

Figure 1 Schematic setup for top view of the spherical hologram 

The radiated source pressure of the cube is computed by the boundary element method (BEM) with 

the normal velocity supplied by the finite element method (FEM). The number of modes is estimated 

by the method introduced in Section 2.2 in the Ref. 15. It is to simulate the realistic radiator whose 

exact number of efficient modes is hardly to be obtained but estimated by a reasonable guideline. A 

specific amount of noise with prescribed SNR on the hologram, which is generated with 

𝐧 = 𝛾𝐒𝛌𝑁𝑜𝑖𝑠𝑒 (19) 

where 𝛌𝑁𝑜𝑖𝑠𝑒 is a Gaussian random vector, and 𝛾 = 10−𝑆𝑁𝑅/20‖𝐑−1𝛌𝑁𝑜𝑖𝑠𝑒‖2
−√𝑊𝑃0

 is an energy re-

lated variable to make sure the generated noise 𝐧 can make the specified SNR. 

To simulate more realistic problems in which the necessary number of participant modes is hard to 

be obtained exactly and the truncation error is introduced, the radiated source pressure on holograms 
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is generated from a vibrating cubic structure driven by a harmonic excitation. As shown in Figure 2, 

the cubic model is excited by a harmonic force along z-axial at a specified position 

(0.4𝑎, 0.4𝑎, −0.5𝑎) and the four corners at the bottom are constrained. Thicknesses of the six walls 

are set as 0.004 m, and steel material is assigned to the model. The harmonic response is obtained by 

a commercial finite element software at frequencies 601Hz, which is chosen closely to the one modal 

frequencies with an aim to obtain a uniformly distributed velocity on the surface. Once the boundary 

velocities are obtained, the radiated sound pressure at the measurement positions are computed by 

the boundary element method [15] as the inputs for the reconstruction. 

x

yz

F
a

 

Figure 2 Configuration of the cubic structure excited by a harmonic force F (denoted by the red arrow) along 

the z-axis 

There are errors due to the truncation of the participant modes. Therefore, reconstructions are firstly 

performed for the pressure 𝒑𝑛𝑢𝑚 obtained numerically by the FEM and BEM which is also treated as 

the exact source pressure. The reconstructions are considered as the references of no-noise included 

measurement. Contour plots of the reconstructed pressure for the reference cases are given in Figure 

3. In spite of a slight disparity in the quantity, it can be observed that the reference reconstructions 

are very satisfied with the simulated pressure because the significant pressure distributions are well 

reconstructed. Later on, different SNRs ranging from 4dB to 28dB with the increment being 4dB are 

added to the simulated pressure to validate the robustness of the NAH to the noise which is unavoid-

able in the realistic experiment. The noise is also obtained by Eq. (19). 

  

(a) (b) 

Figure 3 The reconstructed pressure based on the no-noised included measurement on (a) the spherical holo-

grams with the necessary number of modes N=3 for (b) the simulated results at frequency 601Hz 

Relative errors of reconstructed pressure energy on the model’s surface is defined as 

𝜀𝑊𝛤
=

‖𝒑𝑟𝑒𝑐𝑜𝑛−𝒑𝑛𝑢𝑚‖2
2

‖𝒑𝑛𝑢𝑚‖2
2   (20) 

, where 𝒑𝑟𝑒𝑐𝑜𝑛 is the reconstructed pressure based on different SNRs. The relative errors are plotted 

in  Figure 4. To estimate the error, variable 𝑐4 is required to be supplied by 

𝑐4 =
‖𝒑𝑟𝑒𝑐𝑜𝑛‖2

2

‖𝒑𝑟𝑒𝑐𝑜𝑛−𝒑𝑛𝑢𝑚‖2
2  (21) 

based on the simulated results. Figure 4 depicts that the most necessary number of modes for the 

pressure reconstruction at frequency 601Hz is 𝑁 = 3. The decreased results for the reconstructed 
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pressure with increased number of necessary modes illustrate that over-selected number of modes 

may result in accuracy loss especially for structures with irregular shapes as well as small SNRs. It is 

because that over-selected number of basises will yield the translators with larger condition numbers 

which is likely to amplify the errors in the experiment. 

  
(a) (b) 

Figure 4 Errors of the reconstructed pressure energy with planar holograms at 601Hz for (a) the relative er-

ror 𝜺𝑾𝑻
, and (b) the normalized error 𝜺̃𝑾𝑻

 

The normalized errors are also presented in Figure 4(b). The normalized errors are all less than 

one and increase along with the SNRs. The small errors for small SNRs and participant number of 

modes are due to the fact their lower bounds are underestimated while the upper bounds are over 

estimated. The extreme small normalized errors for the case 𝑁 = 3 are due to the dominated trunca-

tion errors for small number of adopted participant modes. As indicated for the reference cases, also 

the no-noise included cases, the reconstructed errors are closer to one, or in other wards more approx-

imated to the estimated upper bounds. More important than the cases with small SNRs for which the 

estimated lower bounds are almost zero, the no-noise included cases (with infinity large SNR) can 

supply more reasonable lower bounds with the approach in Section 2. The numerical examples clearly 

demonstrated the validity of the proposed estimation of the bounds. 

4. Experimental Study 

An experiment is set up to explore the performance of the MRS-based NAH in this section. The 

edge length of the cubic radiator is 0.2 m. Reconstruction is performed on the spherical hologram. As 

shown in the Figure 5(a), the cubic model is placed at the centre of the spherical hologram by hanging 

in a portal frame with a rigid hollow rod. A single point drive is applied to the model by a small 

exciter on the top surface, Figure 5(a). To make sure a uniform velocity distribution is generated on 

the surface, the analyzing frequency is selected closely to one of the modal frequencies, which is 

634Hz. The model has an equivalent radius 𝑟̃ = 0.138 m, and the measurements are performed on a 

spherical hologram apart from the equivalent sphere by Δ = 0.1 m. The necessary degree of the FS 

is adopted as = 3 . Correspondingly, the minimum required microphone along the 𝜃 and 𝜙 direction 

are 4 and 7, respectively. Here, we made an over sampling by placing 5 microphones along the 𝜃 

direction, and taking 9 sequential measurements along the 𝜙 direction. 
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(a) (b) 

Figure 5 The experimental setup: (a) overview of the configuration, (b) details of the model 

To validate the reconstructed results, the same 5 × 9 measurements are performed on a spherical 

validation surface Ω with radius being 0.18 m. In light of Eq. (7), the relative difference of the recon-

structed pressure with respective to the measured one on the validation surface is denoted by  

𝜀𝑊Ω
=

‖∑ (𝜆𝑛−𝜆𝑛,Ω)𝑆𝑛(𝑘,𝐱)
(𝑁+1)2

𝑛=0 ‖
2

‖∑ 𝜆𝑛,Ω𝑆𝑛(𝑘,𝐱)
(𝑁+1)2

𝑛=0 ‖
2

  (22) 

in which 𝜆𝑛 and 𝜆𝑛,Ω are coefficients obtained on the hologram and validation surfaces, respectively. 

Figure 6 depicts a comparison of the radiated pressure distribution on a spherical surface between the 

one reconstructed from the hologram and the one measured directly on the validation surface. It is 

clearly observed that the reconstructed pressure has a very satisfactory distribution agreement with 

the measured one for which the 𝜀𝑊Ω
 is 4.5% and the relative error of the largest pressure magnitude 

is 21.8%. 

  

Figure 6 The radiated pressure distribution on the spherical validation surface for (a) reconstructed from the 

hologram, and (b) obtained from the direct measurement 

5. Conclusions 

In this work, error analysis as well as the experimental study of the MRS-based NAH are investi-

gated. It is found that the reconstruction accuracy are subjected to two kinds of errors, one is the SNR 

and another one is the truncation error due to the limited number of participant modes adopted in the 

MRS-based NAH. An error model is built, and the relative error of the reconstructed pressure energy 
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on the surface of the vibrating structure is derived. The lower and upper bounds of the relative error 

can be achieved numerically by a constrained nonlinear optimization algorithm. However, the ap-

proach generally yields underestimation of the lower bound and the overestimation of the upper 

bound especially for MRS-NAH with large condition numbers. Alternatively, a reasonable lower 

bound is obtained by considering the case without noise or equivalently with positive infinite SNR. 

It eliminates the influence of the condition number of the inverse translator, and is only related to the 

truncation errors. Thus, it is feasible to predicate the lower error of a reconstruction with the MRS-

based NAH once the truncation error is given, which is validated by numerical examples. Proper 

estimation of the truncation errors is highly related to the reasonable estimation of the lower bound, 

which deserves more investigation. 
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