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This paper investigates structural wave propagation in a fluid-filled beam with spatially varying 

property of material along the axis of propagation. The beam comprise two elastic faceplates 

with a central core of tunable fluid such as electro-rheological (ER) or magneto-rheological 

(MR) fluid. The corresponding wavenumbers depend on the viscoelastic properties of the tuna-

ble fluid, which in turn depend on the field applied to the fluid. Consequently, the position-

dependent wavenumbers can be controlled by manipulating the local magnitude of field. A gen-

eralized wave approach based on reflection, transmission and propagation of waves is proposed 

for the analysis of such tunable fluid-filled beam. Numerical results are also presented for the 

spatially varying magneto-rheological fluid-filled beams. An explicit expression is provided for 

the calculation of propagation constants and thus the complex band structures. Distribution of 

the applied field is also specially designed for the desired band-gap structure of the whole tuna-

ble fluid-filled beam. It is further developed to examine the effects of spatially varying field on 

the band-gap behaviour, which could be the guidance of designing new tunable meta-structures. 
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1. Introduction    

The dynamic behaviour of a structure are usually described in terms of waves and their propa-

gation, reflection and transmission. This paper is particularly concerned in non-uniform waveguides 

that have variation in smart structures like magneto-rheological fluid filled beams. 

Wave-based methods are developed in order to attempt to enhance the computational efficiency 

of prediction tools, and therefore extend the applicability of deterministic models to higher frequen-

cies. However, waveguide properties are usually assumed to be homogeneous for the sake of the 

simplification of computation. Examples include the Wave Based Method(WBM)[1][2][3], based 

on the indirect Trefftz approach, the spectral element method[4][5], that uses analytical solutions 

for the wave propagation to assemble dynamic stiffness matrices for waveguides, the Semi-

Analytical FE method[6], that uses a FE formulation for the cross section of waveguides and as-

sumes a wave like solution in the direction of propagation of the waves, and the Wave Finite Ele-

ment(WFE) method, that applies the theory of periodic structures for homogeneous waveguides 

using a FE model of the cross section.[7]  

 The theory of vibration bending for viscoelastic layered beam structures was presented by 

DiTaranto[8], and Mead and Markus[9] calculated the forced vibrations of a three-layer damped 

sandwich beam system with various boundary conditions. The effectiveness of MR and ER fluid 

layers in controlling the vibration of various flexible continuous structures has been widely investi-

gated analytically and experimentally in a number of studies during the past decade [10]. Yalcintas 
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and Dai [11] studied the dynamic responses of a simply supported beam comprising a layer of MR 

and ER fluid. The above studies have considered fully treated beam structures comprising either an 

ER or a MR fluid layer over the entire length of the beam. It has been suggested that the controlla-

ble rheological fluid may also be applied locally or partially in a given structure to achieve relative-

ly higher natural frequencies [12]. Partial fluid treatments are considered to be attractive, particular-

ly for large structures and for realizing more efficient and compact vibration control mechanism 

[13]. 

This paper is organized as follows. In section 2, the mathematical model of MR sandwich beam 

is presented in two methods: Mead and Markus formulation (Abbreviated as: MMF) and finite ele-

ment formulation (Abbreviated as: FEM). The results calculated in these two methods are compared 

and these two methods are validated in this way. In section 3, the transmission matrix of partially 

treated magneto-rheological sandwich beam is presented in order to analyse the pass/stop band 

structure of MR sandwich beam. 

2. Problem statement 

2.1 Modelling of MR material  

An MR fluid can dramatically change its shear modulus under application of a magnetic field. 

It is taken as the core material in the considered MR fluid sandwich beam. When a magnetic field is 

applied through an MR fluid, the magnetic particles align themselves along the lines of magnetic 

flux. As a result, both the storage modulus G  and loss modulus G  increase dramatically with in-

creasing magnetic field. The frequency independent MR fluid material as reported in Vibration 

analysis of sandwich rectangular plates with magneto-rheological elastomer damping treatment [14]. 

The relation between the storage modulus, loss modulus and the applied magnetic field can be 

approximated by: 

 2 3 6' 3.3681 4.9975 10 0.873 10G B B        

 2 3 6

2 0.9 0.8124 10 0.1855 10G B B        (1) 

Where B is the magnetic induction. While the storage modulus ( )G B  is proportional to average 

energy stored during a cycle of deformation per unit volume of the material, the loss modulus 

( )G B  is proportional to the energy dissipated per unit volume of the material over a cycle. More-

over, both the moduli are functions of the magnetic field intensity B . As a result, both storage and 

loss moduli increase with increasing magnetic field. Consequently the stiffness and damping prop-

erties can be controlled using the applied magnetic field. This enables an effective mechanism to 

suppress the vibration of the structural systems. The properties of shear modulus is shown in Fig.1  

 
Fig.1: The changing tendency of shear modulus 

with different magnetic intensity 

Fig.2: The cross section of MR sandwich beam 

in magnetic field 
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2.2 Dynamic model of magneto-rheological sandwich beam 

The developed model predicts the transverse vibration response of MR material based non-

homogeneous adaptive MR beams. The MR beam was formed of various independent controllable 

sections, which permit applications of different magnetic field levels at each section. The modelling 

of the axially non-homogeneous beam was achieved by considering each controllable section first, 

and then appropriate coupling of adjacent regions resulted with continuous response of the overall 

beam structure. In this section, the composite adaptive beam model is demonstrated for one control-

lable section of the beam. In the next section, the application of the model to the overall beam struc-

ture will be presented. 

This model is based on several assumptions: 

(1) Rotary inertia effects are neglected; 

(2) No slipping was assumed between the elastic layers and MR layer; 

(3) All three layers experience the same transverse displacement; 

(4) No normal stress in MR layer and no shear strains in the elastic layers exist. 

The cross-sectional configuration of the three-layered beam is shown in Fig.2. The resulting 

sixth-order transverse vibration equation is given in the form (Mead and Markus 1969) [9] of: 

 
6 4 4 2

6 4 2 2 2

( ) ( , )
(1 )

w w m x w w gf x t
g Y g

x x x t tEI EI

     
     

     
  (2) 

where EI , m ,Y  are the total bending stiffness of the beam, the mass per unit length and the ge-

ometric parameter. Y  is described as 

 

1
2

1 1 3 3

1 1d
Y

E h E hEI



 
  

 
  (3) 

where 1h , 2h  and 3h  represent the height of constraining layer, MR fluid layer and base layer 

respectively. And the complex shear parameter g  is: 

 

*

1 1 3 32 2

2 1 1 3 3 2 1 1 3 3

1 1 E h E hG iGG
g

h E h E h h E h E h

   
     

   
  (4) 

Consider the free vibration problem. The dispersion equation is given by 

 6 4 2 2 2(1 ) 0
m m

k g Y k k g
EI EI

        (5) 

This equation is cubic in 2k  and thus three pairs of positive- and negative-going waves exist, 

with wavenumbers, which are in general complex. 

2.3 Finite element formulation of a multi-layer beam 

In finite element analysis (FEM), a standard beam element with two end nodes with three de-

grees –of-freedom (DOF) for each node is considered. The DOF include the transverse w , axial u  

and the rotational   displacements of the beam. The transverse and axial displacements can be ex-

pressed in terms of nodal displacement vectors and shape functions, as follows: 

   uu x,t = N (x)d(t)  

   ww x,t = N (x)d(t)  (6) 

where  1 1 1 2 2 2, , , , ,u w u w d(t) , uN (x)  and wN (x)  are common linear and cubic polynomial 

beam shape functions represented as: 

1( ) 1
e
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N x

l
 

2 3

2 2 3

3 2
( ) 1

e e

x x
N x

l l
  

2 3

3 2

2
( )

e e

x x
N x x

l l
    



ICSV24, London, 23-27 July 2017 
 

 

4  ICSV24, London, 23-27  July 2017 
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where el  is the length of the element. 

Upon substituting these equations into Lagrange’s equations, described as the governing equa-

tions of motion for the undamped MR sandwich beam element in the finite element form can be 

obtained as above. 

The discrete dynamic equation of a MR sandwich beam obtained from the FEM model at a fre-

quency   is given by 

 
2( )j   K C M q f       (8) 

Where K , M  and C  are the stiffness , mass and damping matrices of the MR sandwich beam, 

respectively, f  is the loading vector and q  is the vector of the degrees of freedom. Introducing the 

dynamic stiffness matrix   
2j   D K C M , decomposing into left and right boundaries, and 

interior degrees of freedom, and assuming that there are no external forces on the interior nodes, 

results in the following matrix equation: 

Then, the transfer matrix can be written in terms of the dynamic stiffness matrix as 

 
1 1

1 1

LR LL LR

RL RR LR LL RR LR

 

 

 
  

   

D D D
T

D D D D D D
      (9) 

Free wave propagation is described by the eigen problem 

L L

L L


   

   
   

q q
T

f f
       (10) 

The 6 eigenvalues of equation (5) can be split into two sets of 3 eigenvalues and eigenvectors 

which are denoted by i  and 1/ i , with the first set such that 1i  . In the case 1i  , the first 

set must contain the waves propagating in the positive direction, which are such that 

 Re 0H

L Lj q f  , then 

i xe k
λ ,   

In

e

i

l


λ
k        (11) 

 Table 1: Comparison of wavenumber of a MR-sandwich beam derived from the MM formulation and 

the finite-element with the measured frequency (500Hz) 

Filed intensity(G) Mode Real -Imag 

FEM MMF deviation FEM MMF  deviation 

0 1  

2 

3 

1.3478 

0.3036 

20.0132 

1.0232 

0.3015 

20.5718 

0.3246 

0.0021 

0.5586 

30.179 

2.9281 

0.7800 

28.8907 

2.9286 

0.6859 

1.2883 

0.0005 

0.0941 

250 1 

2 

3 

2.5418 

0.3429 

16.5084 

1.8564 

0.3354 

17.391 

0.6854 

0.0075 

0.8826 

38.028 

4.2592 

0.8736 

34.7234 

4.2535 

0.8016 

3.3046 

0.0057 

0.072 

500 1 

2 

3 

2.7925 

0.3106 

15.1316 

1.9857 

0.2995 

16.0827 

0.8068 

0.0111 

1.6711 

42.765 

4.8247 

0.7277 

38.1338 

4.8137 

0.6788 

4.6312 

0.011 

0.0489 

750 1 

2 

3 

2.1915 

0.2311 

14.793 

1.5426 

0.2216 

15.754 

0.6489 

0.0095 

0.961 

44.262 

4.9757 

0.5268 

39.1833 

4.9620 

0.4927 

5.0787 

0.0137 

0.0341 
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Fig.3: Comparison of the wavenumbers 

calculated from FEM and MMF at different 

frequencies (Real part). 

Fig.4: Comparison of the wavenumbers 

calculated from FEM and MMF at different 

frequencies (Imag part). 

 

2.4 Comparison of results of two methods 

Table 1 shows the real parts and imaginary parts of the wavenumbers calculated by MM formu-

lation and FEM method. The results obtained from these two methods show a great similarity. In 

Fig.3 and Fig.4, we can see that only the real part of wavenumber for mode 1 shows a little differ-

ence. But the error of calculation is absolutely acceptable. For 0-100Hz, the real parts of wave-

number for mode 2 show some difference. It is more likely to attribute to error of the theory of 

Mead and Markus formulation. To sum up, the results of these two method are reliable. 

  
 
Fig.5: The changing tendency of wavenumbers 

with different magnetic intensity at 500Hz 

(Real part). 

Fig.6: The changing tendency of wavenumbers 

with different magnetic intensity at 500Hz 

(Imaginary part). 

 

2.5 Results and discussion 

Fig.5 and Fig.6 show the real and imaginary parts of the wavenumber for positive travelling 

waves at 500Hz, as functions of applied magnetic field. Results at other frequencies are qualitative-
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ly similar. The wavenumbers are complex. The real and imaginary parts are related to the phase and 

attenuation of the wave with distance. 

There are three wave modes. For small magnetic fields wave mode 1 behaves like a bending 

near field, having a relatively large imaginary part. It can propagate with large phase change but it 

generally propagates little energy. Wave mode 2 behaves like a “push-pull” axial wave motion in 

the outer layers. It has small phase changes and attenuates rapidly with distance. Wave mode 3 can 

propagate freely with large phase change and attenuate relatively gradually. It can transport energy 

relatively freely over large distances. As the magnetic field increases, the imaginary part of wave-

number for mode 3 attenuates. It means that, Mode 3 will carry the most energy of all the three 

modes as the magnetic induction increases.  

3. Partially treated MR sandwich beam 

3.1 Inhomogeneous MR sandwich beam model 

 

 

 

 

 

 

 

 
Fig.7: The cross section of inhomogeneous MR sandwich beam 

 

If the MR fluid layer is partially distributed along the whole beam. Then the whole beam can be 

modelled to be composed of Euler-Bernoulli beam and MR sandwich beam. Then, the whole beam 

can be divided into three waveguides as Fig.7 shows. 

3.2 Wave-based method 

Assuming three connected waveguides, the degrees of freedom and internal forces are grouped 

into vectors as below, where i , j  represent the serial number of the interface of these waveguides 

and a ,b  represent the left and right waveguides of each interface. 

aj aj j aj j

    W Ψ a Ψ a ,    aj aj j aj j

    F Φ a Φ a        

                        bi ai i bi i

    W Ψ a Ψ a ,    bi bi i bi i

    F Φ a Φ a                          (12) 

where a


Ψ , a


Ψ , b


Ψ , b


Ψ  are the displacement matrices for the positive and negative going 

waves at each respective waveguide, and b


Φ , a


Φ , b


Φ , b


Φ  are the internal forces matrices for the 

positive and negative going waves at each respective waveguide. Continuity and equilibrium condi-

tions, can be written as 

aj aj bi biC W C W , aj aj bi biE F E F        (13) 

where ajC  and biC are the continuity matrices and ajE  and biE  are the equilibrium matrices. 

A scattering matrix iG , relating the waves from the left side of the junction to the waves at its right 

side, can be defined as 
aa ba

j j

   a r a t b          

ab bb

j j

   b t a r b         (14) 

Applying the continuity and equilibrium conditions, and assuming the matrix inversion exists, 

thus 

MR fluid layer 

Constraining layer 

Base layer 

Euler-Bernoulli 

beam 

Euler-Bernoulli 

beam 
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 
-1

ac bc bb bb ab

2 b 1 b 2 b 1t = t I - f r f r f t        (15) 

aa aa ba bb bb -1 bb ab

1 1 b 2 b 1 b 2 b 1r = r + t (I - f r f r ) f r f t       (16) 

Where 
bf represents the propagating matrix of MR sandwich beam, ac

t  represents the transmis-

sion matrix and aa
r  represents the reflection matrix. Since the magnetic field applied to the MR 

beam determines the wavenumbers and the reflection and transmission matrices at the EB/MR junc-

tions, it is clear that this field can be used to control the vibration energy flow through the insert. 

Fig.8 shows the transmitted power per unit incident power for various magnetic fields. There is a 

distinct minimum at a particular frequency, and the stop band is tunable by changing the magnetic 

field. 

3.2.1 Junction between an Euler-Bernoulli beam and a tunable fluid-filled beam 

As the above part explained, consider the junction between an Euler-Bernoulli beam and a MR 

sandwich beam b. From continuity at the junction, the slopes, displacements and the axial defor-

mation on both sides of the junction must equal each other. As a consequence, the continuity matri-

ces are given by 

1 0 1 0 0

0 1 , 0 1 0

1 0 0 1
0

2

a bC C

d

 
   
   

    
    
 
 

       (17) 

From equilibrium the shear forces and the bending moments on both sides of the junction must 

also equal each other while the net axial force is zero. Hence, 

1 0 1 0 0
,

0 1 0 1 0
a bE E

   
    
   

       (18) 

3.3 Numerical Example 

Consider an MR sandwich beam of length 50el mm  inserted into an EB beam, the beam prop-

erties being those given in section 3.1. Fig.8 shows the transmitted power per unit incident power   

for various magnetic fields. 

 

 
Fig.8:Transmitted power per unit incident power for partially treated MR sandwich beam 

3.4 Results and discussion 

Fig.8 shows the transmitted power per unit incident power for various magnetic fields. The 

results are calculated from the equation(15) . Note in Fig.8 that there is a distinct minimum at a 
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particular frequency:800-1000Hz , and that this frequency can be tunable by changing the magnetic 

field. As the intensity of magnetic field increases from 0G to 600G, the transmitted power per unit 

incident power at 200-400Hz is attenuated form 1 to 0.6. Then, it is shown that the insert of MR 

sandwich beam can act as a band-stop filter, can reduce the transmitted poewer in a disired 

frequency band. It is therefore especially suited to the isolation of structure-borne vibrations in 

those cases where the incident power is somewhat narrow band. At higher frequencies from 1400 to 

2000 Hz, the transmitted power can also be attenuated by enhancing the magnetic field. A distinct 

pass/stop band structure can also be seen clearly.  

4. Conclusion 

 In this paper, the wavenumber of MR sandwich beam is calculated by two methods: finite el-

ement method and MM formulation. The results derived from these two methods are similar to 

each other. It proves that both methods are reliable. Then, a wave based method is proposed to 

analyse the wave propagation in the inhomogeneous MR sandwich beam. The transmission ma-

trix of incident power is presented and the transmitted power per unit incident power is calculated 

by this method. It is shown that MR sandwich beam can be used to act as a pass/stop band struc-

ture. And the result is useful for designing new tunable meta-structures.  
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