
 
 

 

 

  1 

RECONSTRUCTION OF PARTICLE VELOCITY FIELD AND 
SOUND PRESSURE FIELD ON THE SOURCE SURFACE BY 
JOINTLY UTILIZING PARTIAL SOUND PRESSURE AND 
NORMAL VELOCITY 
Zhu Haichao, Mao Rongfu, Su Changwei, Su Junbo and Zhao Yinglong 
National Key Laboratory on Ship Vibration and Noise, Naval University of Engineering, Wuhan, China 
email: haiczhu@163.com 

In order to reduce the number of velocity measurement points, a method of jointly utilizing 
sound pressure and normal velocity is proposed in this paper to reconstruct particle velocity 
field and sound pressure field on the source surface. Firstly, a novel form of pressure acoustic 
radiation modes is derived, which are corresponding with the complex velocity acoustic radia-
tion modes. On this basis, partial sound pressures and normal velocities can be jointly utilized to 
reconstruct the particle velocity field and the sound pressure field. Finally, numerical simulation 
on a simple supported plate and experimental verification on a clamped plate are carried out. 
The results show that the reconstruction can be realized by jointly utilizing partial sound pres-
sures and normal velocities. So we can reduce the number of velocity measurement points by 
replacing them with sound pressure measurement points. The proposed method is helpful for 
engineering application of acoustic source identification and acoustic field prediction using par-
tial measurements on the surface of acoustic source. 

 Keywords: pressure acoustic radiation mode; sound pressure; normal velocity; jointly utilization; re-
construction 

 

1. Introduction 

Acoustic source identification and acoustic field prediction have become advanced research hot-
spots in acoustic field. In recent years, with the development of near-field acoustic holography 
(NAH) technology, in-depth studies have been made in above two areas. As the name implies, NAH 
solves acoustic problems by using near-field measurements. However, NAH can only be applied in 
laboratory as a result of its strict requirements on background noise and sensor position [1]. By con-
trast, it’s simpler and more direct to use measurement data on the source surface to solve these 
acoustic problems. In general, the more measurement data we know, the higher accuracy of identi-
fication and prediction can be achieved. But in practice, it’s difficult to place a large number of sen-
sors. Furthermore, if a large number of sensors are arranged on the source surface to measure nor-
mal velocity, the vibration of the source will be changed, as a result it will reduce the accuracy of 
identification and prediction, even cause failure. Hence, how to realize the reconstruction of particle 
velocity field and sound pressure field on the source surface under the condition of sparse meas-
urement points, especially under the consideration of reducing the number of normal velocity meas-
urement points, is a urgent problem to be solved. In this paper, in order to solve the problem, a 
novel method of jointly utilizing partial sound pressure and normal velocity on the source surface is 
proposed based on the acoustic radiation mode (ARM) theory. 

ARMs are sets of independently radiating velocity distributions. Since the ARM theory is ap-
peared, the form of ARM keeps changing. Sarkissian [2] firstly put forward the ARM with real vec-
tor form (real ARM for short) by an eigen-decomposition of radiation resistance matrix. It is known 
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to be a powerful tool for interpreting sound radiation since it is easy to calculate and only dependent 
on geometrical information. A number of scholars developed its theory and application at around 
the same time, for example, Cunfare [3] and Elliott [4]. At present, the ARM-based methods of 
acoustic source identification are all based on real ARM. But this real ARM is subject to certain 
limitations, i.e., in order to calculate the real ARM, the discretization of the source surface must be 
evenly. It is difficult for the sound sources with complex shapes. With the emergences of multi-
level fast multipole algorithm (MLFMA) and preprocessing FFT algorithm, the eigen-
decomposition of large matrix can be realized. On this basis, Wu put forward the ARM with com-
plex vector form (complex ARM for short) by an eigen-decomposition of radiation impedance ma-
trix [5]. Obviously, this complex ARM has better applicability on the sound sources with complex 
shapes. 

The work in this paper is based on the complex ARM. For the sake of jointly utilizing sound 
pressures and normal velocities, a novel form of pressure acoustic radiation mode (p-ARM for short) 
is derived in Section 2, and the mode is one-to-one corresponding with the complex velocity acous-
tic radiation mode (v-ARM for short). On this basis, a reconstruction formula, which jointly utiliz-
ing partial sound pressures and normal velocities to reconstruct the particle velocity field and the 
sound pressure field, is established in Section 3. And then, a numerical simulation and an experi-
mental verification are carried out respectively in Section 4 and Section 5, and the feasibility of the 
method proposed here is verified. 

2. Theory of complex ARM 

2.1 Complex v-ARM 
Dividing the source surface into a number of elementary radiators, and the acoustic power radi-

ated by this array of elementary radiators may be written as 

 1 2 Re[ ]H
n nW v SZv , (1) 

where S is a diagonal matrix, its diagonal elements are the areas of the elementary radiators is . Z is 
the radiation impedance matrix. nv is the vector of normal velocities at these elementary radiators. 
Here, conducting an eigen-decomposition on Z directly, that can be written as 

 HZ =ΦΛΦ , (2) 

in whichΦ is an unitary matrix of eigenvectors, and its columns ( 1, 2, )i i N φ are v-ARMs which 
have complex vector forms. 1 2[ , , ..., , ...]idiag    is a diagonal matrix of eigenvalues i . The vector 
of normal velocities at these elementary radiators on the source surface is the sum of the v-ARM 
amplitudes weighted by the v-ARM shapes, so that 

 nv =Φc , (3) 

in which c is the vector of v-ARM amplitudes. Substituting Eq. (2) and Eq. (3) into Eq. (1), the 
acoustic power radiated by this array of elementary radiators can thus be written as 

 2

1

Re( )
N

i i i
i

c s


W = . (4) 

It can be seen from Eq. (4), the expression of the acoustic power expressed by the complex v-
APM has the same form as that expressed by the real v-ARM. It is important to note that only the 
real component of i is used to calculate the acoustic power. Based on this, we rearrange the eigen-
vectors according to the size of the real component of the eigenvalue, i.e., Re( )i . Then a set of 
complex ARMs whose radiation efficiencies ranking from high to low can be obtained, we mark 
this sorted matrix of complex ARMs as reΦ . 
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2.2 Complex p-ARM 
So far, there is less study on the p-ARM. Berkhoff derived the real p-ARM theory by an eigen-

decomposition of the admittance matrix (which is the inverse of Z ) [6]. In this subsection, it is 
shown that a complex p-ARM can be obtained by the complex v-ARM calculated above, and the 
corresponding relations between the p-ARMs and the v-ARMs can also be found. 

As we point out in the preface, ARMs are sets of independently radiating velocity distributions. 
If the acoustic source is vibrating only by the thi  ARM, i.e., n iv  , then the vector of complex 
sound pressures immediately in front of each radiator, i.e., p is given by 

 i i ip=Z  , (5) 

in which i is the eigenvalue corresponding to the eigenvector i . Obviously, ( 1,..., )i i i N  is also a 
set of basis in vector space, and the set of basis is one-to-one corresponding with the complex v-
ARM. So we define this set of basis as the complex pressure acoustic radiation mode, i.e., complex 
p-ARM. Furthermore, the complex p-ARM and the complex v-ARM have similar form. They are 
one-to-one corresponding, and there is only a different coefficient between them. It provides a theo-
retical basis for jointly utilizing sound pressures and normal velocities to solve acoustic problems. 

3. Jointly utilize partial sound pressure and normal velocity 

According to the above derivation, the vector of normal velocities on the source surface can be 
expressed by the complex v-ARM expansions 

 n rev Φ c . (6) 

Combining with the Eq. (5), the vector of complex sound pressures on the source surface can be 
written as 

 s re rep Φ Λ c , (7) 

in which reΛ is the diagonal matrix of sorted eigenvalues. 
Assuming that we divide the source surface into N elementary radiators, we can calculate N order 

ARMs. As the Eq. (6) is characterized by its fast convergence, therefore, the vector of normal ve-
locities and the vector of sound pressures can be represented by a finite numbers of ARMs, i.e., 
modal truncation. Here, we assume that the cut-off order number of ARMs is 1N , then Eq. (6) and 
Eq. (7) can be written as 

    1 1 1n re N N N v Φ c , (8) 

    1 11 1( ) 1s re re N NN N N p Φ Λ c , (9) 

where  1re N NΦ is a 1N N matrix,  1 1N c is a 1 1N  vector,
1 1( )re N NΛ is a 1 1N N diagonal matrix. If we have 

known partial normal velocities on 2N elements and partial sound pressures on 3N elements, based on 
Eq. (8) and Eq. (9), the equations composed by the known data can be written as 

    2 1 1

'
1nk re N N N v Φ c , (10) 

    1 13 1 1

'
( ) 1sk re re N NN N N p Φ Λ c . (11) 

It can be seen that there is a common unknown in the two equations, i.e., the vector of ARM ampli-
tudes  1 1N c . Thus, the simultaneous equations can be constituted by combining Eq. (10) with 

Eq. (11), then we can solve  1 1N c by jointly utilizing sound pressures and normal velocities, which is 

written as 
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in which the superscript   denotes the pseudo-inverse of matrix. And then, substituting the solved

 1 1N c into Eq. (8) and Eq. (9), the particle velocity field and the sound pressure field on the source 

surface can be reconstructed, which are written as 
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Therefore, we can realize acoustic source identification and acoustic field prediction by jointly 
utilizing partial sound pressure and normal velocity on the source surface, and the goal to reduce the 
number of normal velocity measuring points is achieved. 

4. Numerical simulation 

In this section, we specialize the problem. The system chosen is a simply-supported baffled plate 
system. The plate is assumed to be made of steel, and its dimensions are 0.5m 0.5m 0.008mx yL L h     . 

In the simulation a harmonic point force is located at    0 0, 0.125, 0.125x y  , relative to the centre of 
the plate. The amplitude of the point force is 1N, and the frequency of the point force is 612Hz 
(equal to the modal frequency of (2, 2) mode). We divide the plate surface into 32×32 elementary 
radiators. According to the theory given in the Ref. 7, the vector of particle normal velocities on the 
plate surface can be calculated. Then, the vector of complex sound pressures on the plate surface 
can be obtained by 

 s np Zv , (15) 

where, for radiators in a baffle, the concrete form of the radiation impedance matrix Z is given in the 
Ref.  6. We mark nv and sp calculated by this way as theoretical values. Figure 1 shows the theoreti-
cal particle normal velocity and the theoretical sound pressure on the plate surface, each of which 
contains amplitude and phase. 

Now, in order to validate the feasibility and effectiveness of jointly utilizing partial sound pres-
sure data and normal velocity data on the source surface to reconstruct the particle velocity field and 
the sound pressure field, we consider three different example cases here. The numbers and distribu-
tions of measurement points arranged in these cases are introduced, as follows: 

In case 1, 25 velocity measurement points and 25 pressure measurement points are arranged 
evenly, and these distributions are shown in Fig. 2. 

In case 2, replacing the 25 pressure measurement points in Fig. 2(b) with 25 velocity measure-
ment points, that’s to say, 50 velocity measurement points are arranged. 

In case 3, removing the 25 pressure measurement points in Fig. 2(b), that’s to say, only 25 veloc-
ity measurement points in Fig. 2(a) are arranged. 

Next, the particle velocity field and the sound pressure field on the plate surface are recon-
structed in three different cases, marking these results as reconstructed values. To compare the dif-
ferences between theoretical values and reconstructed values, we define error formula as 

 2 2

1 1

/ 100%
N N

ri ti ti
i i

Error v v v
 

    , (16) 

in which riv represents reconstructed values and tiv represents theoretical values. Table 1 lists the re-
construction errors for cases 1, 2 and 3, each of them contains the reconstruction error of velocity 
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and the reconstruction error of pressure. Here, to save space, we just display the distribution of the 
normal velocity and the sound pressure reconstructed under case 1, as shown in Fig. 3.  

Comparing these results, we can deduce the following conclusions: 
(a) Comparing Fig. 3 with Fig. 1, it can be seen that the particle velocity field and the sound 

pressure field on the plate surface are reconstructed accurately by jointly utilizing partial sound 
pressure data and normal velocity data.  

(b) As shown in Table 1, the reconstruction errors under case 1 are similar to those under case 2. 
It can be seen that the reconstruction results by jointly utilizing 25 sound pressures and 25 normal 
velocities are in good agreement with that by directly utilizing 50 normal velocities. So we can find 
that, by the method proposed in Section 3, the roles of the two types of measurement points, i.e., 
velocity measurement points and pressure measurement points, are basically the same. That’s to say, 
by this method, we can replace partial velocity measurement points with pressure measurement 
points. It may have many potential advantages in engineering application. 

(c) Comparing the reconstruction errors under case 1 with those under case 3, we can find that, 
too little number of measurement points results in worse reconstruction result. So jointly utilizing 
partial sound pressure data and normal velocity data for reconstruction is very necessary. 

 

       
(a) (b) (c) (d) 

Figure 1: Theoretical values on the plate surface: (a) Amplitude of normal velocity; (b) Phase of normal ve-
locity; (c) Amplitude of sound pressure; (d) Phase of sound pressure. 

 

     
(a) (b) 

Figure 2: The distributions of measurement points: (a) Velocity measurement points; (b) Pressure measure-
ment points. 

Table 1: Reconstruction errors 

 Case 1 Case 2 Case 3 
Reconstruction error of nv  11.42% 12.23% 20.71% 
Reconstruction error of sp  3.01% 5.18% 9.50% 
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(a) (b) (c) (d) 

Figure 3: Reconstructed values on the plate surface under case 1: (a) Amplitude of normal velocity; (b) Phase 
of normal velocity; (c) Amplitude of sound pressure; (d) Phase of sound pressure. 

5. Experimental verification 

To further investigate the feasibility of the method proposed in this paper, an experimental veri-
fication is carried out. The model chosen here is a clamped rectangular plate. The plate is made of 
steel, and its dimensions are 0.5m 0.5m 0.001mx yL L h     . The experimental scene is shown as Fig. 4. 

It’s necessary to note that, we measure the reference values on the plate surface by using NAH 
technology here. The specific process is as follows: First, using the NAH measurement system to 
measure the sound pressures on the hologram; Then, the normal velocity and sound pressure on the 
plate surface, can be reconstructed by NAH technology. The distance between two adjacent measur-
ing points is 0.05m  in both two directions, and the distance between the measuring plane and the 
plate surface is 0.04m  . 

 

 
Figure 4: The scene of experiment. 

A single point force inertia actuator is used as the disturbance and the forcing frequency is 
292Hz (equal to the modal frequency of (3, 3) mode). By stepping the linear array, we get sound 
pressures on 13 13  near-field measurement points. Then, these measurements can be used to recon-
struct the 13 13  normal velocities and 13 13  sound pressures on the plate surface by using NAH 
technology. Here, mark the results as reference values, as shown in Fig. 5. 

 

       
(a) (b) (c) (d) 

Figure 5: Reference values on the plate surface: (a) Amplitude of normal velocity; (b) Phase of normal veloc-
ity; (c) Amplitude of sound pressure; (d) Phase of sound pressure. 
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Next, based on the theory introduced in Section 2 and Section 3, we just select 20 normal veloci-
ties and 20 sound pressures among the reference values to reconstruct the particle velocity field and 
the sound pressure field on the plate surface. In other words, there are 20 velocity measurement 
points and 20 pressure measurement points are arranged evenly on the plate, and these distributions 
are shown in Fig. 6. By calculating, the reconstruction error of normal velocity is 24.62% and the 
reconstruction error of sound pressure is 14.38%. The reconstructed results are shown in Fig. 7. 
Comparing Fig. 7 with Fig. 5, it can be seen that the reconstruction results by jointly utilizing 20 
sound pressures and 20 normal velocities are in good agreement with the reference values. So the 
feasibility of jointly utilizing partial sound pressure data and normal velocity data on the source 
surface to reconstruct the particle velocity field and the sound pressure field is further verified by 
this experiment. 

 

     
(a) (b) 

Figure 6: The distributions of measurement points: (a) Velocity measurement points; (b) Pressure measure-
ment points. 

 

       
(a) (b) (c) (d) 

Figure 5: Reconstructed values on the plate surface: (a) Amplitude of normal velocity; (b) Phase of normal 
velocity; (c) Amplitude of sound pressure; (d) Phase of sound pressure. 

6. Conclusions 

In this paper, a method to jointly utilize sound pressure data and normal velocity data on the 
source surface is proposed for the reconstruction of particle velocity field and sound pressure field. 
Firstly, a novel form of p-ARM is derived on the basis of the complex v-ARM. Then, with the one-
to-one corresponding relationships between the two ARMs, a reconstruction formula of jointly util-
izing partial sound pressures and normal velocities is established. And then a numerical simulation 
on a simple supported plate is carried out, the results show that the particle velocity field and the 
sound pressure field on the plate surface can be reconstructed accurately by jointly utilizing partial 
sound pressure data and normal velocity data. Finally, an experimental verification on a clamped 
plate is carried out, and the feasibility of the method is further verified. 

Compared with the traditional methods, this method can realize the reconstruction by jointly util-
izing partial sound pressures and normal velocities on the source surface. So we can reduce the 
number of velocity measurement points by replacing them with sound pressure measurement points, 
and sometimes take full advantage of the sound pressure data that we had known. Therefore, this 
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study can promote the engineering application of acoustic source identification and acoustic field 
prediction while using partial measurements on the surface of acoustic source. 
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