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Short circular holes with a high Reynolds mean flow passing through them are a common
occurrence in applications such as Helmholtz resonators, perforated plates or liners and fuel in-
jectors. The acoustic response of such holes has been shown to be strongly dependent on the
path followed by the vorticity which is shed at the hole inlet and convected downstream to form
a vortex sheet. Coupling between this vorticity and the acoustic waves has the potential either
to absorb or to generate acoustic energy in the low frequency region. A semi-analytical model
based on Green’s function method (The acoustics of short circular holes opening to confined and
unconfined spaces, Yang & Morgans, Journal of Sound and Vibration, 2017) is combined with a
gradient-based optimisation technique to determine the optimal vortex sheet shapes for absorption
or amplification of noise. As the shape of the vortex sheet depends directly on the geometry of
the hole inlet, finding the optimal shape provides information on the geometry required to achieve
the desired acoustic effect.
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1. Introduction

In many practical applications such as internal combustion or aero-engines, acoustic damping
is achieved using perforated liners with a high Reynolds number mean flow passing through. The
acoustic response of short holes with mean flow is also relevant to many other applications such as
Helmholtz resonators and fuel injectors. The damping is due to the conversion of acoustic energy
into sound-induced vortex shedding [1] at the hole inlet, resulting in significant attenuation at low
frequencies.

The acoustic response of an infinitely short hole opening to semi-infinitely large spaces on both
sides was first studied by Howe [2] who determined an analytical expression of the Rayleigh conduc-
tivity of the hole. In this model the vortex sheet formed at the hole inlet is assumed to be straight and
cylindrical. For practical applications, an additional mass inertial term can be added to Howe’s model
to account for a small hole length and the consequent contraction of the vortex sheet as it passes
through the hole. Other methods for predicting the impedance of a short hole include that of Bellucci
et al.[3] which is founded on the conservation of momentum of a one-dimensional compressible flow
across the hole.

However, experimental results [4, 5] have shown that when the hole length is of the same order
as the diameter, the acoustic impedance is somewhat different from that predicted by either of these
models. In particular, with growing Strouhal number the resistance of the hole decreases to the point
where it can become negative, indicating that the hole is no longer absorbing but generating acoustic
energy, whereas Howe and Bellucci’s models predict only absorption. The generation of sound is due
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Figure 1: (a) Schematic of the short circular hole opening to semi-infinitely large spaces on either side,
the shed vortex sheet and the relevant acoustic waves (3 is the Fourier amplitude of the stagnation
enthalpy oscillations defined in Eq. (3)); (b) Schematic of the velocity oscillations at the hole inlet
and outlet and the relevant acoustic waves. Please note the diagrams are not to scale.

to a self-sustained oscillation mechanism which has previously been well documented [6, 7, 8, 9].
Vorticity shed at the hole inlet is advected downstream and affects the sound radiation at the hole
outlet. Reflected waves propagate upstream and, together with the oscillations generated directly
by the vortex sheet, influence the vortex shedding at the inlet edge. Jing & Sun [4] developed a
numerical model taking into account the hole length and using experimental measurements of the
geometry of the vortex sheet. Their numerical results compared well with their experimental data.
Su et al. [5] carried out experiments and CFD for holes of varying length which compared well.
Once again this work shows that only by taking into account the exact shape of the vortex sheet
can an accurate prediction of the acoustic response be made. However, as computational methods
remain expensive and time-consuming, Yang & Morgans [10, 11] developed an analytical model
based on Green’s function method which predicts the acoustic response of finite length holes open to
unconfined or confined spaces on either side. The results provided by this model are consistent with
the experimental, numerical and CFD results of [4, 5]. Yang & Morgans show that both the vortex
sheet contraction coefficient and the shape of the sheet near the inlet edge can influence greatly the
vortex shedding and therefore the hole impedance.

This work aims to combine a gradient-based optimisation technique with the analytical model
developed by Yang & Morgans in order to determine the vortex sheet shapes providing maximal sound
absorption and generation. Depending on the application, this information will indicate the optimal
hole inlet edge geometry (which dictates the vortex sheet shape for a given Reynolds number) to use
in order to attain the desired acoustic effect. This paper is organised as follows. Firstly, the method
behind the semi-analytical model of Yang & Morgans [10, 11] is outlined to provide a basic grasp of
the model. Secondly, the optimisation approach is detailed and elements of validation are presented.
Finally the preliminary results obtained using this method are discussed.

2. The semi-analytical acoustic model

We consider a short circular hole of radius R and length L = R, open to semi-infinite spaces on
both sides (see Fig 1 (a)). A high Reynolds number mean flow of velocity « assumed to be parallel
to the axial direction () passes through the hole, giving a mean Mach number M = i/c with ¢
the sound speed. A low-frequency incoming acoustic wave of sufficiently large wavelength to be
considered as a planar wave causes the shedding of oscillating vortices with matching frequency from
the hole inlet edge. The vorticity is advected through the hole and downstream to form a vortex sheet
as shown in Fig 1 (a) (the dotted line denotes the vortex sheet). Reflected and transmitted waves
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are generated as the incident wave encounters the hole inlet and outlet (a detailed schematic of the
physics inside the hole is provided in Fig 1 (b)). Oscillations reflected at the hole outlet affect the
vortex shedding process at the inlet. Additionally the vortex sheet directly induces oscillations at the
hole inlet which in turn affect the vortex shedding. The main features of the model are outlined in the
following paragraphs; the reader is referred to [10] and [11] for further details.

As the effect of viscosity can be neglected apart from close to the hole inlet, volume forces
are assumed negligible and the flow isentropic, the momentum equation can be written in Crocco’s

form [12]: 5
u

E—FVB:—(LUX’U,) ()
where B is the stagnation enthalpy, w is the velocity and w the vorticity. The conservation of mass
gives:

dp

§+U-Vp+pv-u:0 2)

with p the density. By combining the two equations, decomposing all parameters into mean and
oscillating parts (for example, p = p + p’) and considering first order fluctuations only, a convected
wave equation is reached:

1 8 ,8 2 2 ! /
(Z(E—'—u@_x) —V)B—V-(w X Ue) (3)

where wu, is the vortex convection velocity, taken to be equal to the mean velocity in the hole [13, 14,
4]. This equation is solved by introducing a Green’s function G (z, t|y, 7) which, when defined in
the frequency domain as G (x, y, w), satisfies:

1/ 0\ )\ A
<g<—zw+u%> —V)G—(S(a:—y) %)

with 0 the Dirac function,  the space in which the wave equation is solved and y the acoustic
source location. The problem is then separated into three distinct spaces: upstream of the hole,
inside the hole and downstream of the hole (the subscripts [],, [];, and []4 denote the properties of
these spaces respectively). The Green’s function satisfying Eq. (4) for each space is determined by
including appropriate boundary conditions and taking into account all the relevant acoustic sources.
For example, the boundary conditions for the upstream region are that the velocity oscillations just
upstream of the hole inlet should be zero (dG, /dx(x = 07) = 0) and only outgoing waves propagate
infinitely far away from the inlet. Upstream of the hole the sources are the incident wave and the
velocity oscillation at the hole inlet. Similar boundary conditions are applied downstream and the
sources in this region are the velocity oscillations at the hole outlet and the vortex sheet. Inside the
hole, two Green’s functions éﬁl and G’,; are used for simplicity as explained in [10]. The boundary
conditions are zero-radial velocity on the hole’s inner surface (dG%' (r = R) = 0), dG! /dz(z =
0t) = 0, dG" /dz(z = L~) = 0 and only outward waves propagating at the right (resp. left)
boundary. Using this method, the stagnation enthalpy oscillations in the three spaces can be obtained.
To calculate the vortex-induced oscillations, the vortex sheet is discretised into N, short cone
rings. The velocity oscillations at the hole inlet %; and outlet u, are expressed as sums of Bessel
functions (e.g u; = Z:;OZOO UimJo (4mr/R), with Jy the Bessel function of order 0 and j,, the mth
zero of J;) and are calculated by applying stagnation enthalpy continuity across the hole inlet and
outlet interfaces (the series are truncated at the M th term). The Kutta condition is applied at the hole
inlet edge to determine the vortex sheet strength o. Finally the acoustic response of the hole can be
calculated. For example, the Rayleigh conductivity of the hole is:
wpQ
Kg = Ap )

ICSV24, London, 23-27 July 2017 3



ICSV24, London, 23-27 July 2017

05 |
%> 0 —t—t——t———t————
= 0.2 0.4 0.6 0.8 1 112
- x/R
-05 ¢

g L

Figure 2: Illustration of the analytical definition (Eq. (6)) of the vortex sheet shape with a = 0.2 and
b = 6 (in blue) and its symmetric counterpart (in red).

with w the frequency, Q = UjpmR? the volume flux oscillation through the hole, Uy, the first com-
ponent of the velocity oscillations at the hole inlet and Ap/p = 23:[0 the pressure difference across
the hole. As the whole system is linear, the amplitude of the incoming wave 3:[0 = 1 can be taken
arbitrarily. The frequency is normalised by introducing the Strouhal number St = wR/u,.

3. Optimisation of the vortex sheet shape

The objective of this work is to determine the optimal vortex sheet shape providing the desired
acoustic response of the hole. The vortex sheet shape is defined analytically by:

% =1—a(l—e"/R) (6)
with r, the radial position of the vortex sheet at the axial coordinate x. An example of a vortex sheet
described by this expression is provided in Fig. 2. The vortex sheet is assumed to be fully contracted,
therefore straight and aligned with the hole axis, when it reaches the hole outlet. The optimisation
problem has two control variables: the vortex sheet contraction coefficient (controlled through a) and
the initial slope at the inlet edge (controlled through b). It is shown [11] that the acoustic energy
absorbed by the hole is directly related to the hole resistance Ag: the imaginary part of the Rayleigh
conductivity Kr = 2R (I'g — iAr). When the resistance becomes negative, acoustic energy is being
generated by the flow through the hole. This quantity is chosen to be the cost functional 7, that is
the variable which will be optimised. Using Eq. (5) and the expressions of the volume flux oscillation
and the pressure difference, the expression of this cost function is:

j == AR = %% (inlg> (7)

where & denotes the imaginary part.

3.1 Optimisation method

A Lagrange multiplier technique [15] with a gradient-based update method (such as that used by
Marquet et al. [16]) is applied to solve the optimisation problem. The Lagrange function is defined
as:

with g = (a, b)T the control variables, g the state variables, A the Lagrange multiplier vector and
F (q,g) = 0 the state equation. There are seven state variables: g = (Uyg, o, Ya, Y, Yar, Sa, Sdr)T
with Y relating to the acoustic contribution of the straight vortex sheet downstream of the hole, and
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Y, and Y}, the overall contributions of the vortex sheet inside the hole on the hole inlet and outlet
stagnation enthalpy oscillations respectively. As defined in Egs. (22, 23) of Yang & Morgans [10],
S and Sy, relate to the direct contributions of the discretised vortex sheet to the hole inlet and outlet
stagnation enthalpy oscillations respectively. Setting to zero the variation of the Lagrange function
with respect to the state variables gives the adjoint equation (9).

or _ 0T _ oF
dq dq dq
The components of the Lagrange multiplier vector are determined by solving the adjoint equation.

The steepest descent direction is obtained by deriving the Lagrange function with respect to the con-
trol variables:

0 €))

oL 0 OF OF
oL _oJ _, OF | OF (10)
dg dg dg g

The optimisation follows an iterative procedure providing convergence to the optimal state g* =

(a*,b*)T:
(1) Initial guess of control variables g° = (a°, b°)T
(2) Solve the state equation F' (g, g) = 0 to determine the state variables q
(3) Solve the adjoint equation (9) to determine the Lagrange multiplier vector A
(4) Deduce the steepest descent direction (10) and update the control variables
(5) Loop from (2) to (4) until convergence
The control vector is updated using a steepest descent method: g'™' = g°+ a'0L/dg, with o a small
step size. The convergence towards the optimal solution is monitored through the relative increment
of the cost function with respect to the previous iteration:
ji+1 _ jz
e = W
The optimisation is considered to be converged when e < 107°. Another convergence criterion is
that the norm of the steepest descent direction tends to zero. This criterion is also checked before
concluding the optimisation procedure.

Note that the procedure described above will search for a local or global minimum of the cost
functional 7. The resulting optimal solution (a*, b*) will provide the vortex sheet shape leading to
the least acoustic energy absorption. Obtaining the optimal solution corresponding to a maximisation
of acoustic damping is achieved simply by replacing the cost function by — 7.

In order to guarantee physically acceptable results, the following constraints are imposed at each
iteration 7. The contraction coefficient a must satisfy 0 < a < 1, the initial slope b > 0, and finally
the vortex sheet must be fully converged when reaching the hole outlet dr/dz (x = L) < 0.01R. The
conditions are imposed using a logarithmic barrier method. The Lagrange function becomes:

(1)

4
j=1

with y¢ > 0 a barrier parameter, and ¢; > 0, 7 = 1, ...4 the inequality constraints defined as: ¢; = a—e,
co=1—a—¢€c3=0b—¢€and ¢y = 0.01R — abe *L/F where ¢ > 0 is a small buffer parameter
(e << 1). As the constraints refer specifically to the control parameters, only the steepest descent

direction is impacted:

oL, OF (-1

Og og <= ¢(9)

(13)

The barrier parameter ¢ 1s first set to 1 and then progressively diminished. As ;+ — 0 the minimiser of
the Lagrange functional tends towards the minimiser of the cost function. This practice is particularly
necessary in cases such as that described in Section 3.2 where the solution is close to one of the
boundaries imposed on the control variables.
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St=0.36

Figure 3: Mapping of the hole’s acoustic resistance Ay as a function of the control parameters a and
b for St = 0.36.

3.2 Validation

As, to our knowledge, no such optimisation study has been carried out before, no comparisons
with existing results can be made. Accordingly, an alternative method to validate the optimisation
code has been devised. The semi-analytical model of Yang & Morgans was validated by comparing
results with experimental and computational data [5]. Using this model, a sweep of the control pa-
rameter field provides the hole resistance for each (a,b) for a given Strouhal number. We consider
the following case: R = 6.1073 m, M = 6.2.102 at room temperature 7" = 290 K and pressure
P = 10° Pa. An example of a mapping obtained using this method is shown in Fig. 3 for a Strouhal
number of St = (0.36. It is clear that a global minimum of the resistance can be attained in the
region (a,b) ~ (0,0). The optimisation code minimising the resistance gives an optimal state of
(a*,b*) = (1.107%5,1.2.10~%), which agrees well with the mapping of Fig. 3.

The robustness of the optimisation tool is tested by starting from varied initial guesses (a°, ")
as shown in Fig. 4 (a), all the tests converge on the same point within five iterations and yield the
same minimum resistance A% = 1.26.1073. Finally, for each optimisation, the values of the rela-
tive increment of the resistance between consecutive iterations e and the components of the steepest
descent direction 0L/Ja and 0L/0b are monitored to check the quality of the convergence to the
optimal state. Figure 4 (b) gives these values evolving through the iterative process for the calculation
beginning with (a’, b°) = (0.8, 3). Within ten iterations e drops below 107'° and the gradients reach
1079 which are satisfactory convergence conditions. Many similar validation analyses are carried out
in order to ensure the code functions correctly for all Strouhal numbers and initial guesses.

4. Analysis of preliminary results

Firstly, based on the result presented in the validation phase, it seems that for low frequencies,
minimal acoustic damping occurs when the vortex sheet is straight. Although in application, it is
physically impossible for there to be no contraction at all, adaptation of the shape of the hole inlet
edge could lead to a minimally contracted vortex sheet. As the intention of many applications is
to reduce noise, this case would represent a ‘worst case scenario’ providing the smallest possible
absorption and the conditions that induce it.

Secondly, it appears that at low frequencies, the hole resistance can tend to zero but does not
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Figure 4: (a) Convergence of the acoustic resistance Ay of the hole towards the minimal value A7, for
varying initial guesses (a°,°); (b) Evolution throughout the optimisation of the relative increment of

the

resistance between consecutive iterations e and the components of the steepest descent direction

L /da and OL /b for the case of initial guess (a’, b°) = (0.8, 3).

become negative, ruling out the potential generation of noise through the feedback mechanism. This
is consistent with the experimental and numerical findings described in the introduction. Additional
results for other Strouhal numbers will confirm that in general this is the case for low frequencies and
perhaps provide a critical frequency range within which the resistance can become negative.
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