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Autofocus for Circular Synthetic Aperture Imaging
Hayden J Callow, Stig A V Synnes, Torstein Olsmo Sæbø and Roy Edgar Hansen

Abstract—Fully coherent circular synthetic aperture (CSA)
imaging is challenging. In particular, motion-estimation, sound-
speed, and imaging-topography estimates need to be orders-of-
magnitude better than for traditional straight-line paths. Such
accuracy is required, that data-driven techniques are essential.
Current data-driven methods do not work on circular tracks.

Both topography errors and track errors cause CSA image
defects. For autofocus this presents a highly coupled estimation
problem—it is difficult to separate topography from motion. To
get useful autofocus performance, topography must be accounted
for in the autofocus formulation. Traditional autofocus cannot
make use of this information.

In order to obtain the benefit of fully coherent CSA, we
present here an autofocus algorithm based on maximum a
posteriori (MAP) methods. Use of MAP allows regularization of
the optimisation with prior information. We chose this framework
with the intent that future versions of the algorithm could use
echo-strength information to mitigate the effects of multiple
reflections.

We present preliminary results from the autofocus algorithm
on data collected in the field with a HISAS-1030 SAS. We discuss
the difficulties involved in “real-life” autofocus, in particular we
discuss some of the limits of CSA imaging. In addition, we discuss
the similarities between motion-estimation and interferometry.

Index Terms—Synthetic aperture radar, synthetic aperture
sonar, interferometry, autofocus, maximum a posteriori estima-
tion, MAP, autofocus, bathymetry, topography, phase gradient,
SLAM, simultaneous localization and mapping

I. INTRODUCTION

C IRCULAR synthetic aperture imaging, multi-pass object
classification and multi-pass coherent fusion where the

target is illuminated from different directions are all variations
on the same theme. All methods promise the extraction of
additional target information. In particular:

• shadow regions are illuminated
• full angular wavenumber spectrum is collected
• target roughness estimates may be possible
This information is likely to be useful in sonar imaging

applications where very high detail levels are required. In
particular it is hoped that the additional information will
improve target classification [1].

However, navigation constraints, already challenging in syn-
thetic aperture sonar (SAS), become even tighter in circular
synthetic aperture imaging (CSA) [2]. In addition, the non-
linear collection geometry requires very accurate topographic
information for sensible image formation—down to centimeter
level accuracies.1 In this paper, we simplify the problem
somewhat by looking into linear subsets of circular aperture
data. This partially decouples the imaging defocus problem,
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1So accurate, in fact, that unavoidable layover may make traditional imaging
infeasible (see section III-B).

Fig. 1. Overview of the iterative framework. Each time around the iteration,
a new image, f(x, y) and set of image likelihoods is generated from the
observed SAS data d, and the unknown parameter estimates, ŵ are updated.
The optimiser aims to maximise a combined cost function, C.

but for generating a full image the bathymetric estimation and
relative constraints are unaltered.

We address this problem by proposing an autofocus scheme
for simultaneously estimating both unknown platform motion
and scene topography. By allowing the autofocus system to
estimate both position correction and topography, the major
unknown causes of image defocus are estimated and compen-
sated for.

To implement this autofocus, we use an iterative maximum
a posteriori (MAP) estimation. The main benefit of using a
MAP structure is that we may explore different information
sources to aid the autofocus. In particular, this method allows
use of:

• speckle interferometry
• shape from shading
• shadow mapping

In addition, combinations of the above should be possible,
further strengthening autofocus performance. The current dis-
advantage is a computationally heavy iteration strategy.

II. MAP AUTOFOCUS

To estimate the scene topography and unknown path-motion
in one optimisation we use a MAP estimator in an iterative
framework. In general, there is little separating this method
from the framework presented in [3, Chapter 5] other than
that scene topography is treated as an unknown parameter in
this work.

MAP estimators estimate the unknown parameters corre-
sponding to the maximum likelihood image with prior in-
formation. This prior information regularizes the optimisation
problem and gives a set of constraints on the optimisation
surface. In addition, one may then use the prior information
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as a basis set for the optimisation—greatly accelerating the
process.

We define the optimisation problem as in [3, Chapter 5].
We want to estimate the scene topography and motion which
correspond best to the measured data. Given the measured
data d we want to estimate the most likely parameters ŵ. The
maximum likelihood (ML) estimator is then given by

ŵML = maxŵ{Pr[ŵ|d]}, (1)

where Pr[ŵ|d] is the probability (likelihood) of the unknown
parameters given the data. Using Bayes’ theorem

Pr[ŵ|d] = Pr[d|ŵ]Pr[ŵ]

Pr[d]
, (2)

we obtain the MAP estimator as

ŵMAP = maxŵ{log (Pr[d|ŵ]) + log (Pr[ŵ])}, (3)

where the data (and thus its probability) is constant, Pr[d|ŵ]
is the probability of the data given the parameters and Pr[ŵ]
the probability of the parameters themselves. Essentially then,
all the MAP estimator is doing is allowing use of additional
information about the likelihood of the unknown parameter
set. When no additional prior information about the parameter
set is available MAP and ML estimators are the same.

The real challenge in the estimation scheme is in obtain-
ing useful expressions for the likelihood of the data given
the unknown imaging parameters, Pr[d|ŵ]. Typical autofocus
schemes use the prior information that the sharpest image is
most likely (a contrast optimisation prior).

We choose an autofocus scheme where we include multiple
sources of information. The three sources of information used
in this work are

Sharpness the sharpest image is best
Shape from shading does echo match echo expected from

the hypothesis sea-floor slope
Shadow mapping does the observed shadowing match

the hypothesis.
In addition, we show that optimising sharpness in an interfero-
metric system is equivalent to estimation based on minimising
interferogram phase. These three methods are described indi-
vidually in the following subsections.

Our implementation of the iterative autofocus is shown in
figure 1. We alter optimisation parameters until the most likely
parameters are found and iterate until the chosen cost function,
C, is maximised. We discuss our cost function in more detail
in section II-D.

Choosing an appropriate set of unknown optimisation pa-
rameters has been covered in earlier articles [2]. In this work
we optimise using a conjugate gradient solver where d corre-
sponds to the collected SAS images rendered onto a common
Earth-fixed grid and where the optimisation parameters,

ŵ =
[
ẑ(x, y),∆X̂n

]
, (4)

are a common scene topography, ẑ(x, y), and corrections of
navigation positions in 3D space, ∆X̂n, for each pass n. Solv-

ing the optimisation problem may be seen as Simultaneous
Localization and Mapping (SLAM).2

A. Image sharpness

Image sharpness is a constraint used often in autofocus. One
states simply that the most likely image is the sharpest, or has
maximum contrast. These priors are based on the premise that
most mistakes in imaging parameters lead to defocus—which
blurs the scene and lowers image contrast. As we show in the
appendix, the same metric is useful in bathymetric estimation.
Thus, the best combined estimate of bathymetry and unknown
path parameters is the one generating the sharpest image.

Stating formally, for each imaging pass n. We make a
coherent bathymetric image

fn(x, y) = flower,n(x, y) + fupper,n(x, y) (5)

where flower,n(x, y) and fupper,n(x, y) are the sonar images
from the lower and upper banks, and calculate intensity per
look, n, at the scene

In(x, y) = |fn(x, y)f∗n(x, y)| (6)

We attempt to optimise contrast in the combined intensity
image

I(x, y) =
∑
n

In(x, y). (7)

And state that the most likely image corresponds to the image
with highest contrast

Prsharp[ŵ|d] ∝
std(I(x, y))

mean(I(x, y))
, (8)

where the standard deviation and mean operators average over
the entire image.

B. Echo strength

Echo strength as a method for estimating local topographical
variations is commonly used with structured lighting in normal
image processing—so called shape from shading. In sonar it
has been used with reasonable success in [4].

To use this source of prior information we state that the
most likely height-map is the one where the predicted echo
strength matches the observed data:

Precho[ŵ|d] ∝
1

Id,ŵ(x, y)− ILL,ŵ(ŵ)(x,y)
(9)

where Id(x, y) and ILL,ŵ(ŵ)(x,y) are the observed and
predicted models respectively.

There are a number of unknown parameters in the prediction
model that must be assumed for the method to work. We
adopt the model backscattering described in [5] and [6] for
a homogeneous sandy sea-floor both for bottom and target.

2Typical SLAM implementations for AUVs do not model the actual
height measurement process (usually based on interferometric measurements)
so cannot provide as accurate results as this higher-order model. SLAM
implementations however often model INS drift, something not attempted
in this work.
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C. Shadow mapping

Raytraced shadows give additional information on topo-
graphic maps. In particular this information source corre-
sponds to that used in typical side-scan images to estimate
object height.

We state that the most likely scene is that where the shadows
match those predicted from a shadow-mapped hypothesis. This
may be summarised as

Prshadow[ŵ|d] ∝
1

Sd,ŵ(x, y)− SRT,ŵ(ŵ)(x,y)
(10)

where Sd,ŵ(x, y) corresponds to binary shadow masks created
from applying thresholds to images and SRT,ŵ(ŵ)(x,y) from
predicted line-of-sight for a given parameter set ŵ.

Obviously, this technique only gives information where
the local-slope is such the self-shadowing of the topography
occurs so appropriate weighting needs to be applied.

D. Cost function and optimiser

The cost function we use provides a method for weighting
the three information sources discussed earlier.

We use a simple solver where we traverse along the pre-
dicted gradient of the cost function, C. We use the derivations
from the appendix to obtain an energy-neutral cost function
gradient term that corresponds to final image contrast.

Thus we use

dC
dz(x, y)

∝
∑

n wn(x, y)∠
(
flower,n(x, y)f

∗
upper,n(x, y)

)∑
n wn(x, y)

(11)

where the weights wn(x, y) are generated by multiplying:

wn(x, y) =
|γn(x, y)|

1− |γn(x, y)|
sn(x, y) (12)

where γn(x, y) is the interferometric coherence averaged over
a 9 by 9 window and

sn(x, y) =

{
1, Sd,ŵ(x, y) 6= 1

0.01, Sd,ŵ(x, y) = 1,
(13)

is a term to penalize areas predicted by the current parameters
to lie in a shadow region. Terms for dC

d∆Xn
are determined by

cross-correlating |fupper,n(x, y)|0.6 and for |fupper,n+1(x, y)|0.6
that are 90◦ from each other.

The, admittedly ad-hoc, optimisation system used here has
one important advantage over that discussed in section II—
height-estimates from multiple object reflections are discarded.
The disadvantage is that the optimiser will not converge to the
highest contrast image. It will however, be a better estimator
of topography. Future work in defining a better cost function
will be needed.

III. RESULTS

At this stage we have implemented a simple descent-based
solver which is applied to four 90◦ passes of HISAS 1030
SAS data collected with a HUGIN1000 AUV [7].

The scene of interest is a rectangular object of approxi-
mately 10 m by 3 m. The top-edges of the rectangular section
are approximately 1 m over the sea-floor and surface about

0.6 m. HISAS 1030 data has been collected by running in
the four cardinal directions at about 70 m range to the object.
Both INS and DPCA navigation have been used and over the
15 minute imaging period relative accuracy is estimated to be
at 1 m level.3

Figure 2 shows the effect of applying the method to obtain a
good fused bathymetry and echo strength estimate. We believe
that the fused results shown in figure 2 to be more likely to
match the actual object in question. This is because:

• Bathymetry edge transition is sharper.
• Bathymetry on the object is flatter.
• Image edges become better co-located. (We believe there

is a thin, high-reflectivity, railing around the edge of the
object.)

• Effect of likely multiple reflections is reduced.
We admit that there are, as yet, no ground truth measurements
so objective comparison is difficult. Section III-A describes the
major reason for the improved bathymetric estimates.

The combined echo-strength estimate is not as useful as
the individual images. The effects of layover, discussed in the
following sub-sections, are a particular challenge.

A. Multi-bounce

For complicated objects, there will often be multiple in-
ternal reflections and complicated acoustical interactions. In
particular, for man-made objects with straight edges and high
reflection coefficients, multiple bounces may cause misleading
bathymetric estimates, see figure 3.

Figure 4 shows two height-map estimates of the same object
seen from different sides. The side nearest the sonar may suffer
from a strong multiple bounce. Interferometry-based height
mapping estimates the direction of arrival of the incoming
wave. Where the echo goes from object to sea-floor, the
bathymetric estimate will be incorrect. These regions are often
visible as strong, coherent echoes from an unlikely height.

As may be seen in figure 5, this effect is strongly suppressed
by weighting “shadow” regions with a penalty. As the multi-
bounce is below the sea-floor it looks like shadow and is
penalised by the proposed method. The end result in the
optimisation is also visible in figure 2 where the surface of
the object is more even after five iterations.

B. Layover

Layover, where the acoustic travel time corresponds to
multiple ground-plane locations is a particular problem in CSA
imaging. We show a simple example of this on the target of
interest. The object most likely has vertical walls. Thus the true
height, and ground-plane location are entangled and cannot be
separated as shown in figure 6.

Circular geometries allow partial estimation of the true
height as vertical wavenumber coverage is extended by the
new geometrical regime [8]. The sea-floor in front of the object
seen from one side is visible from another aspect and thus may

3Experimental results shown here appear to indicate 15 cm aided INS drift
during the collection period.
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Fig. 2. Comparision of image (in log dB) and height map (relative in m) results at first and fifth iterations, four looks used (eight images). Above, combined
image estimate (left) and height-map (right) at end of first iteration. Below, combined image estimate and height-map after 5 iterations. Axes in meters.

Fig. 3. Multibounce problem. Multiple reflection source has higher signal
energy than direct path. Thus direction of arrival for the acoustic wave
estimated by interferometry is “incorrect”.

be estimated. Rendering in a common height-plane as done in
this article is however fraught.

We show an example from the final bathymetric results
shown in figure 2 which shows one of the eight combined
images. Using a flat topography in imaging results in the first
image (first iteration), but using the final estimated topography
(fifth iteration) the second image is obtained. A number of
image pixels on the right-hand edge are duplicated. This
increases image energy, decreases contrast and obscures the
sea-floor echo obtained from the other imaging aspects. This
is a bad idea.

Due to these problems we suggest for future work using the
multiple-aspect imagery as the basis for an inversion instead
of attempting to estimate simple echo strength. These regions
may then be weighted according to conservation of energy
principles.

IV. DISCUSSION

As discussed in sections II-D and III-B, straightforward
image contrast is not a very stable measure of scene likelihood.
In autofocus, energy is preserved as defocus simply moves
image energy around. In imaging onto a predicted height-map
this is also true, but instead of imaging many regularly spaced
height planes we slice the vertical plane with the predicted
height-map. This leads to large energy variations—energy may
be “created” or lost by imaging points many times. This is
clearly visible in figure 7. Overall this lowers contrast.

The iteration scheme derived in the appendix is based on
assuming constant energy and therefore attempts to minimise
interferogram phase. This strategy still works for producing
height maps but will not in the end improve contrast. Better
use of prior information is thus required and a new definition
of the log-likelihood function used in the iteration framework.

Each of the current sources of prior information lack full
coverage. Some challenges:

• The scene does not look the same from all sides, thus isn’t
maximally sharp at the correct parameters (e.g. imaging
of spheres).

• Multiple target bounces is confusing—particularly for
topographic prior information. The ad-hoc system works
but better prior information should be used.

• Shadow mapping should not be a binary process.
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Fig. 4. Comparision of images (log dB) and interferograms (relative depth in meters) obtained from different view directions. View directions correspond to
left, and right of the object respectively. Images are above height maps. Note height-map disagreement in region immediately following object leading edge.

• Echo strength predicts slope whereas interferometry esti-
mates height.

• Using a scattering model assuming sandy floor is not
sensible on objects.

Future work will concentrate on allowing the image target
strength to be an unknown and better integrating the predicted
echo strength. We would also like to estimate scattering
parameters (surface roughness) as hypothesized in [7], [9].

V. CONCLUSION

We present a fusion of image based and bathymetry based
SLAM in a common framework. This is the first time a
combined bathymetry and autofocus framework has been
presented.

The framework provides a simple method for including
additional prior information sources. These sources can help
provide improved bathymetric estimation in difficult cases.

New sources of prior information are desirable and future
work will concentrate on finding them. We will also look
into obtaining direct recursive solvers to reduce optimisation
computational costs.
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APPENDIX

INTERFEROMETRY AND IMAGE SHARPNESS

We note that the combined image is made from two coher-
ently combined interferometric images as

f(x, y) = fupper(x, y) + flower(x, y). (14)

Making the typical (narrow-band) interferometric assumption
that the image pair contains the same complex scene with
a superimposed phase shift corresponding to the (as yet
unknown) scene topography gives (14) as

f(x, y) ≈ fscene(x, y)(1 + exp (−jφ(x, y))), (15)

where φ(x, y) is the interferogram phase we would normally
use to estimate scene topography. The scene intensity is then
given as

I(x, y) = |f(x, y)f∗(x, y)|, (16)

= |fscene(x, y)|2|2 + 2 cos (φ(x, y))|. (17)

We make the approximation that only φ(x, y) varies with the
predicted scene topography, and can thus state that maximum
likelihood for height-estimation is,

maxŵ{Pr[ŵ|d]} = minŵ{φ(x, y)|ŵ,d}. (18)

Thus, the sharpest combined interferometry image corresponds
to the image where the interferogram phase is zero.
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Fig. 5. Comparison of bathymetry predicted and measured echo strength
images (in log dB). The sonar is not calibrated so only relative levels are useful
for comparison. False estimated texture is due to slope standard deviations in
the topography estimate. The bathymetry has been median filtered with a 5x5
window before being used to generate echo strength predictions.

Fig. 6. Illustration of layover geometry. Weak seafloor and strong object
echoes are impossible to separate from single look direction. Rendering onto
the “correct” ground plane places object energy both on the object and on the
seafloor.

It is worth noting that this derivation is applicable to
multiple-vertically displaced receivers and is just an extension
of similar along-track phase gradient constraints to the vertical
array. Similar derivations are used in PACE [10] and recursive
direct phase estimation techniques based on image contrast [3,
Chapter 6].
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