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1 INTRODUCTION 

Low-Frequency Active Sonar (LFAS) systems are the method of choice for long-range underwater 
surveillance and detection of targets. To extract relevant sonar contacts, the raw LFAS data 
undergoes several signal processing steps. These include processes such as beamforming, matched 
filtering, detrending of the signal as a function of range, and additional analyses to extract candidate 
sonar contacts [1]. Each candidate contact is classified as either background/clutter or a potential 
target. 

 
Feature-based classification and machine learning or artificial intelligence technology can assist with 
(semi)automatic classification of sonar contacts. Such systems can be trained with a dataset of 
measured target data [2] [3] or employed as anomaly detection trained only in a given environment 
[4]. In both situations, systems heavily rely on the provided recorded example data. Deploying a 
trained system in a new underwater environment will likely lead to degraded performance. 

Unfortunately, new LFAS target data is expensive to obtain, environmentally dependent, and scarce. 
Simulating sonar data in different environments is a useful approach to generate new data [5]. 
Nevertheless, the key question remains: what is the optimal simulation and training strategy given the 
environmental dependency?  
 
In this work, three different approaches of applying trained machine learning systems in a new 

underwater environment are studied. Various underwater environments will be simulated and include 
clutter (simulated solid sphere made of rock) and targets (simulated air-filled steel spheres). Our 
approaches include: (1) a zero-shot/generalization approach that is evaluated in an environment not 
present in the training data, (2) a few-shot approach in which the zero-shot classifier is fine-tuned with 
a subset of in-situ sonar data, and (3) an environment-specific approach that is only trained on a 
subset of in-situ sonar data and evaluated in that same environment. A number of machine learning 

systems will be investigated, including a support-vector machine (SVM), a fully-connected neural 
network (FCN), and a convolutional neural network (CNN). 
 
 

2 METHODS 

2.1 Data simulation 

The clutter and target data are simulated by combining artificial background data and a target echo 
time series of this target at pre-specified ranges, bearings, and depths in this environment. The data 
simulation can be divided into two parts: (i) the background simulation, and (ii) the target echo 
simulation and injection. 
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2.1.1 Background simulation 

To determine the effect of the environment, four general environmental descriptions were considered, 
partly based on the Weston Memorial workshop [6] [7]: 

• Weston 1: Shallow water, Iso sound speed profile 

• Weston 2: Shallow water, winter profile (linear profile) 

• Weston 3: Shallow water, summer profile (weak surface duct) 

• Weston 7: Deep water, Munk profile 

The sediment type is very important for the background, because it changes how much energy 
remains inside the water column and how much energy is lost to the sediment. In the simulations , the 
following sediment types are considered [8]: course clay, medium silt, medium sand, and very coarse 
sand.  
 

The depths of the environments are varied as well. The water depths for the shallow water 
environments are 50, 100, 150, 200, and 250 m. For the deep-water scenario, the water depths are 
500, 1000, 1500, 2000, and 2500 m. 
 
The noise in the scenarios are fully wind-generated, the sea state is assumed to be 3, and there is 
no shipping noise. The reverberation in the scenario follows Lambert’s rule, with μ= -27 dB  [8, p. 500]. 

For the scenario, a transducer is chosen to be at 25 m depth, which can both transmit and receive. 
The transducer is a horizontal line array, pointing north. The transducer sends out an LFM waveform.  
 
The TNO sonar performance model ARCANE [9] is used to compute the propagation, the noise, and 
the reverberation of this environment.  
 

2.1.2 Simulation and injection of targets echoes 

Before anything can be done with target injections, first a set of targets must be chosen and their 

locations (range, bearing, depth) have to be determined. Two types of objects are chosen: a solid 
sphere made of granite as a proxy for clutter, and an air-filled sphere of steel as a proxy for a target. 
For these objects, analytical formulas for a sphere in an infinite medium are used [10].  
 
The simulation of target echoes requires to combine target scattering and propagation. This is done 
using a ray tracer, following [8, p. 615]. The echo level as a function of time is computed by tracing 

rays from the source to the target location, combined with the corresponding angle dependent target 
strength, and finally combined again with the propagation from the target to the receiver.  As 
mentioned before, the transducer is a horizontal line array and has a beampattern. This beampattern 
is also applied to the received signal. Since this process is done in the frequency domain, the final 
step in getting the time signal is done by doing an inverse Fourier transform. The time signal then has 
to be injected into the precomputed background. This is done by converting the time axis of the signal 
to a range axis (by multiplying by the speed of sound) and fusing the target with the background. 

From this point on, the backgrounds with the injected targets can be put through the further processing  
chain. 
 
2.2 Snippet processing chain 

The data simulation produces a range-bearing matrix (or ‘ping’) with size 360×102400, corresponding 
to a bearing of -180° to 179° and a range of 15 km. An example can be seen in Figure 1. The data is 
processed using similar steps as described in [2]. The beamformed and matched filtered data is 
detrended and provided as input to a detector. The detector gives a number of range-bearing detected 

points per ping as output. For each detection point, a snippet matrix of 17×1053, centred around the 
detection point, was extracted. The snippet matrices contain normalized values in dB. Some 
examples are shown in Figure 1. 
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Figure 1 Left: typical example of a range-bearing matrix. Right: examples of snippets corresponding 
to target echoes from air-filled spheres (top row) and from clutter (granite spheres; bottom row). 

 
2.3 Machine learning approaches 

Three machine learning approaches were implemented: a support vector machine (SVM), a fully-
connected neural network (FCN), and a convolutional neural network (CNN). These approaches will 
classify the snippets as either background/clutter or a target.  
 
2.3.1 Support vector machine (SVM) 

A SVM was implemented using SGDclassifier with the hinge loss function from the Scikit-learn Python 
package [11]. The SGDclassifier with hinge loss was used instead of LinearSVC, because it scaled 
better with the number of data points. Candidate sonar contacts were flattened into a 1D array and 

concatenated with the range and bearing of the contacts, before providing them to the SVM. The 
number of training epochs was 250. For the zero-shot approach, the batch size was 10000 candidate 
sonar contacts and for the other two approaches, the batch size was 120 candidate sonar contacts.  
 
2.3.2 Fully-connected neural network (FCN) 

A fully-connected neural network was implemented based on PyTorch Lightning [12] [13]. Candidate 
sonar contacts were flattened into a 1D array before providing them to the FCN. The FCN consisted 
of one input layer, a hidden layer of 8 nodes, a second hidden layer of 4 nodes, and an output layer. 

The range and bearing value of the contact was added to the hidden layer. The loss function was 
binary cross entropy, the optimizer was Adam and the learning rate was initialized at 0.0005. For the 
zero-shot approach, the batch size was 10000 candidate sonar contacts and the FCN was trained for 
2000 epochs. For the other two approaches, the batch size was 120 candidate sonar contacts. The 
number of epochs for the few-shot approach was 150 and for the environment-specific approach 
1500.  

 
2.3.3 Convolutional neural network 

A convolutional neural network was implemented based on PyTorch Lightning [12] [13]. The CNN 
consisted of two convolutional layers followed by two fully connected layers. To account for the 
anisotropic pixel sizes in the range-bearing snippets, the first convolutional layer used eight kernels 
of size [2×17] with a stride of [1×1], followed by a flattening layer and an average pooling layer of size 
2. This way, the information in the bearing direction of the snippet was extracted. The second, one-
dimensional, convolutional layer used sixteen kernels of size 100 and stride 2, followed by an average 

pooling layer of size 4. The first fully connected layer consisted of 864 nodes and the second of 8 
nodes. The range and bearing value of the contact was added to the second layer. The loss function 
was binary cross entropy, the optimizer was Adam and the learning rate was initialized at 0.001. For 
the zero-shot approach, the batch size was 10000 candidate sonar contacts, and the CNN was trained 
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for 2000 epochs. For the other two approaches, the batch size was 120 candidate sonar contacts. 
The number of epochs for the few-shot approach was 150 and for the environment-specific approach 
1500.  
 

2.4 Experiments and evaluation 

2.4.1 Simulation overview 

As explained in Section 2.1.1, a large number of unique environments was considered. Per unique 
environment, 12 ‘pings’ were simulated. Out of these pings, six included 100 steel spheres as a proxy 

for a target and the other six included 100 granite spheres as a proxy for clutter.  The steel and granite 
spheres had a diameter of 10 m. The steel sphere was filled with air, has a thickness of 0.2 m, and 
was placed at a random position in the water column. The granite sphere was solid and was always 
placed at 1 m from the sea bottom. The objects were placed at random positions at a range between 
2 and 15 km from the source, in random directions. Both source and receiver were placed at a depth 
of 25 m.  

 
2.4.2 Experiments 

Three approaches will be evaluated with the simulated datasets: 
1. A zero-shot / generalization approach, where the performance of the machine learning 

systems is evaluated in a dataset that is not present in the training data.  

2. A few-shot approach, where the machine learning system from the zero-shot approach is 

fine-tuned with a limited subset of in-situ sonar data from the environment it will be evaluated 

in. 

3. An environment-specific approach, that is trained with a limited subset of in-situ sonar data 

and evaluated in that exact same environment. 

Each environment 𝐸𝑃𝑆𝐷 has three variables that can change: 𝑃 being the Weston sound speed profile 

(1, 2, 3, or 7), 𝑆 being the sediment type (course clay, medium silt, medium sand, and very coarse 

sand), and 𝐷 being the depth. See Section 2.1.1 for details on these variables. The data of every 
environment 𝐸𝑃𝑆𝐷 is split into a subset for training (60% of the data) and a subset for test (40% of the 

data). 
 
All machine learning systems will be evaluated in a cross-validation setting, where the system is 

trained on a selection of the training data subsets and evaluated on the relevant test data subsets. In 
each cross-validation setting, one 𝑃𝑆𝐷 parameter will be varied and the others will be fixed. For 

example for the Weston sound speed profile 𝑃: 

1. Zero-shot / generalization: the machine learning systems are trained with the training subsets 

from  𝐸{1,2,3}{𝑎𝑙𝑙}{𝑎𝑙𝑙} and evaluated on the test subsets of 𝐸{7}{𝑎𝑙𝑙}{𝑎𝑙𝑙}. This is then repeated for 

the other Weston sound speed profiles 𝑝 ∈ 𝑃. 

2. Few-shot: similarly, the machine learning systems are evaluated in a cross-validation setting. 

The systems are trained with the training subsets from 𝐸{1,2,3}{𝑎𝑙𝑙}{𝑎𝑙𝑙} (like the zero-shot), then 

fine-tuned with the training subset from 𝐸{7}{𝑠}{𝑑}, and evaluated on the test subset from 

𝐸{7}{𝑠}{𝑑} (separately for every 𝑠 ∈ 𝑆 and 𝑑 ∈ 𝐷). This is then repeated for the other Weston 

sound speed profiles 𝑝 ∈ 𝑃. 

3. Environment-specific: : similarly, the machine learning systems are evaluated in a cross-

validation setting. The systems are trained with the training subsets from 𝐸{7}{𝑠}{𝑑} and 

evaluated on the test subset from the same environment 𝐸{7}{𝑠}{𝑑} (separately for every 𝑠 ∈ 𝑆 

and 𝑑 ∈ 𝐷). This is then repeated for the other Weston sound speed profiles 𝑝 ∈ 𝑃. 

This approach is repeated for the sediment types (𝑆 is varied, while considering all 𝑃 and 𝐷) and the 

depths (𝐷 is varied, while considering all 𝑃 and 𝑆). Receiver operating characteristic (ROC) curves 

will be generated for each approach and the area-under-the-curve (AUC) will be computed.  
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3 RESULTS 

The snippet processing chain was applied to all simulated datasets. Because the signal -to-noise ratio 

can be low for contacts at larger range, not all injected targets were presented as a snippet. For 
evaluation purposes, only detected contacts are considered in the performance comparison.  
 
Results for the experiments explained in Section 2.4.2 are given separately for the Weston sound 
speed profiles 𝑃, the sediment types 𝑆, and the depths 𝐷. 

 
3.1 Weston sound speed profiles 

An example ROC curve for Weston 1 is provided in Figure 2. This figure shows separate ROC curves 
for the SVM, FCN, and CNN machine learning systems. For all three machine learning systems, the 
zero-shot / generalization approach has the worst performance, although for the FCN and CNN it is 
considerably better than for the SVM. The few-shot and environment-specific approaches show the 

best performance for all three machine learning approaches. For the FCN and CNN, the few-shot 
approach performs best.  
 
 

 
 

Figure 2 Receiver operator characteristics (ROC) curves for the Weston 1 sound speed profile, for 
the SVM (left), FCN (middle), and CNN (right). Overall, the zero-shot / generalization approach 
performs worse than the few-shot and environment-specific approaches. The CNN appears to 
outperform SVM and FCN, which is also confirmed by the higher AUC values in Table 1. 

The results for all Weston sound speed profiles are summarized in Table 1, which presents the AUC 
values. It can be observed that the classification results in Weston 7 are better than in the other 
Weston profiles, likely because it is easier to classify objects in deeper water (this trend is also 

observed in the results where depth is varied).  The reason behind this could be that the multipath is 
more spread out in time in these environments. The first and second arrivals happen at distinctly 
different times and have no overlap, compared to the shallow environments where the differences in 
path lengths are very small. 
 
Table 1 Receiver operator characteristics (ROC) area-under-the-curve (AUC) values for all 

experiments in which the Weston sound speed profile was varied. 

  Zero-shot Few-shot Environment-specific 

Test set SVM FCN CNN SVM FCN CNN SVM FCN CNN 

Weston 1 0.54 0.74 0.75 0.72 0.79 0.86 0.73 0.77 0.83 

Weston 2 0.56 0.70 0.69 0.69 0.76 0.85 0.70 0.79 0.85 

Weston 3 0.56 0.71 0.74 0.68 0.75 0.85 0.67 0.73 0.80 

Weston 7 0.60 0.80 0.83 0.84 0.91 0.93 0.83 0.88 0.90 
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3.2 Sediment types 

The results for the various sediment types are summarized in Table 2. It can be observed that a more 
clay-like sediment type in the environment makes classification less complicated. This is because the 
rays loose a significant amounts of energy when they interact with the sediment, meaning that there 
is very little multipath as only the direct arrivals remain. In general, the more sandy the sediment type 

is, the harder classification is. 
 
Table 2 Receiver operator characteristics (ROC) area-under-the-curve (AUC) values for all 
experiments in which the sediment type was varied. 

  Zero-shot Few-shot Environment-specific 

Test set SVM FCN CNN SVM FCN CNN SVM FCN CNN 

Coarse clay 0.63 0.83 0.82 0.82 0.90 0.92 0.82 0.89 0.92 

Medium silt 0.58 0.75 0.75 0.73 0.85 0.88 0.74 0.80 0.89 

Medium sand 0.58 0.74 0.71 0.69 0.79 0.81 0.69 0.75 0.81 

Very coarse sand 0.59 0.73 0.72 0.69 0.76 0.80 0.69 0.72 0.81 

 
3.3 Depths 

The results for the various depths are summarized in Table 3. It can be observed that the most shallow 
environment and the deep environments are least complicated environments when it comes to 
classification. For the deep environments, this is likely for the reasons mentioned before, since a 
depth larger than 500 m was only simulated in combination with Weston 7. For the most shallow 
environment, the reason behind this could be that multipath rays have many interaction with the 
surface and bottom, causing these rays to loose a significant amount of energy. This means that there 

is less multipath since only the direct arrivals remain. 
 
Table 3 Receiver operator characteristics (ROC) area-under-the-curve (AUC) values for all 
experiments in which the depth was varied. 

  Zero-shot Few-shot Environment-specific 

Test set SVM FCN CNN SVM FCN CNN SVM FCN CNN 

Depth 50 m 0.57 0.72 0.74 0.77 0.73 0.90 0.78 0.88 0.92 

Depth 100 m 0.57 0.69 0.68 0.67 0.72 0.78 0.69 0.74 0.81 

Depth 150 m 0.58 0.65 0.68 0.65 0.67 0.79 0.67 0.71 0.79 

Depth 200 m 0.59 0.79 0.80 0.69 0.82 0.89 0.68 0.72 0.83 

Depth 250 m 0.59 0.75 0.80 0.70 0.81 0.88 0.69 0.73 0.79 

Depth 500 m 0.63 0.89 0.88 0.82 0.91 0.94 0.80 0.89 0.92 

Depth 1000 m 0.70 0.79 0.86 0.84 0.91 0.97 0.81 0.91 0.94 

Depth 1500 m 0.73 0.84 0.94 0.85 0.88 0.90 0.82 0.85 0.89 

Depth 2000 m 0.70 0.95 0.92 0.86 0.98 0.97 0.84 0.92 0.92 

Depth 2500 m 0.69 0.91 0.93 0.84 0.91 0.95 0.85 0.88 0.94 

 
 

4 DISCUSSION AND CONCLUSION 

This work has focused on the optimal simulation and training strategy of machine learning systems 

to classify underwater contacts. Given the variability of echoes with position (range, direction, depth) 
and propagation conditions, this results in environment-dependent differences in the data that 
commonly used zero-shot approaches cannot deal with. Experiments with simulated data were 
conducted, confirming that the use of in-situ data in a few-shot or environment-specific setting 
improves the performance of various machine learning systems.  
 



Proceedings of the Institute of Acoustics 
 
 

Vol.46, Pt.1 2024 
 

Some limitations should be considered regarding this work. The simulated targets and environments 
are theoretical and lack imperfections observed in measured data. In addition, the calculated 
background levels lack realistic range-dependency characteristics. Furthermore, the machine 
learning methods used in this study are relatively simple and more sophisticated approaches could 

possibly achieve better results. Nevertheless, these limitations likely do not affect the overall 
conclusion that inserting in-situ data in the training dataset is beneficial. 
 
The CNN machine learning systems consistently outperforms the SVM and FCN approaches. The 
performance difference between the FCN and CNN is relatively small and possibly caused by the 
number of trainable parameters; the FCN being a much larger network that is harder to optimize with 

e.g. the limited data in the environment-specific settings. Other neural network architectures might be 
considered (e.g. transformers) that might make better use of the global echo features present in the 
snippets when compared a (more local approach of a) CNN. 
 
In conclusion, the zero-shot / generalization approach showed the worst performance, as expected. 
This suggests that systems do not generalize to unseen environments and including (some) in-situ 

data of new environments is needed for good performance. In practice, in-situ simulated training data 
can be obtained by using a target echo simulation and injection capability, enabled by the availability 
of environment information. The few-shot approach shows slightly better performance than the 
environment-specific approach, with the trade-off that it requires more data. Both approaches should 
be considered when designing machine learning systems for underwater target classification.  
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