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This paper is divided into two quite umrelated parts.
In Part I, we will be considering the propagation of the
fundamental frequency component of a plane vave. And in Part 1I
our attention will be directed towards the possibility of improving

the converation efficiency of the endfire array.

PART I
PLANE WAVES OF FINITE AMPLITUDE

The propagation of finite amplitude plape waves hae already
been described quite thoroughly by Fa:l. Publni-Ghimna.
B].ac.katockj and many others. The accuracy of these findinge ie
mot in question. The eim of thia study was to develop expressions
vhich describe the propagaticn of the fundamental frequency
component of a plane wave accurately but siemply. There is some
merit in baving expressions requiring o more than a slide-rule
for their evaluation. While the detailed approach described
berein is not a fully satisfying cne, the result obtained does seenm
to be remarkably accurate.

¥a will sssume that we may calculate the rate at wvhich energy
is loat by the fundamental Qonpomt of a wave merely by
considering viscous losses and the pressure-volume work done by
the fundamental component on the second harsonic. Other

interactions will be neglected. I believe that Westervelt
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"described a method of thie sort at the Intermational Congress on
Acousties held at Stuttgart in 1959, but, wfortumately, I have mot
yet seep a copy of this paper. The intensity of the fundamental

compenent of a plane wave will be governed by the following

equation:
dIl:-EaIl l vy 1
V. P2
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where Il is the intensity of the fundameptal, x is the aspatial
coordinate, o is the viscous abeorption ecefficient at the
fundamental frequency w, », is the instantaneous second harmonie
pressure at I, V1 {8 the volute of a flnid element of unit mass at x,
snd where the bar indicates a time average over one period.

Several authora#‘s'f’ give the following approximate expression
for Pl

=2a
P, = Poe'au Po (e ") sin {20c—at)) 2
2 p°c°’ 2a

where Po is the initiel pressure amplitude (at x=0), P is a
parameter of wonlinearity (equal to I{r +1) for gases or {1+B/2A)
for liquids), P, i6 the fluid density, ¢, is the sound velocity
when the disturbance is infiniteemal, aund k is the wave number,
uvfeo. The accuracy of equaﬁ'.on (2) will be improved if we replace
Ple™2 oy P2, the square of the fundamental amplitude at x.

Indeed equation {2) modified in this way reduces to the Fubini
solution near the source, and to the Fay solution 11: the shock wave
region. At ranges much greater than a7l the modified esquaticn
underestimates P, by a factor of 2 relative tc the Fay solution

[tkough this difficulty could be overcome by replaci.ns
-2nx =hax

) =2ox 2
Qe )2 by (l-e ) f(1-e )]
l 9¥) i given by K GPy*q vhere E_ ig the adiabatic fluid
Y1 at

compressibility and q=(1/p c, ) 2 (pl). ia the pource function
Bt

_developed by Lighthill’ and simplified by Westervelt®.

l'IS '



‘lhld.ns thess substitutions and moting that. the product of 1 apnd Py

' averages to sero, equation (1) becomes

a . -za:l-;gzmz (1-e ~2%) I: )]
ax pocz 2a

Thiz is a form of Bermoulli's equation and, consulting a text on
elementary differential equatiops, we should find the exact

solution to be 3

N e 2
Lele (e g2 (1”2 ] (la)
or, in Hlackstock's notation :
-2 P -1
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where [ is the acoustic Reynolds pumber asd o= [Tex.

Equation (4b) was checked sgainst Blacketock's solution te
Burgers' equation. It proved to be very difficult indeed to
distinguich between the two solutions on Blacketocks publiched
curves of extra attenuation. Compared with the numerical values
given by Blacketock for very large ranges, the meximum discrepancy
appeared to be 0.35 dB.

The results of an experiment at 8,75 Miz are compared with
equation (&) in Figure 1. Ve see that the plane vave theory agrees
with the experimental peints up to a range of about 40 cw. This
ssems ressonable conoldering that the nearfield limit for the
1 em.equare trassducer (Rayleigh distance) is about 60 cm. The
curve sarked "spreading wave" 1s the result of an sttempt to apply
ghis method to the sound field of a real tramaducer.

A seocond eiper:i.t (at a different frequency) was intended
P determine if the 0.35 dB discrepancy noted mbove could be
resolved experimentally. The experiment was carsfully designed

o that measuressnts could be smade to a relative aceuracy of 0.1 dB.
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lIn Figure 2 wo soo that the experimental points fit tha curves
.predicted by both theories with sbout the same degree of precision. l
'Phe two sots of experimental pointa represent the same data shifted
'rulattve to one another along lines parallel to the diagonal
repressating llnear propagntion. Such a shift oust be permitted
-to nllow for uncertainty in the abaclute values of § and In' Ve
would have to kuow these two quantities to an aceuracy better than
’ . about 2% in order to say with confidence which theory gives the
batter fit,’
A number of useful relations way be derived from equations
(3) ama (W),
The extra attesuation is simply: -
2 o
EXDBS10 log, [11- TE— (1-e2 T )2]
a -
=:|10 log, [11» 1;:—] s oK )

%10 log,, [1+ -&E] ,PLe

The saxizus fundamentsal intensity at sooe range x is as
given by the Fay solution:
5 2
11 . 2 055
max ﬂa wainh(a x)
I, {6

I %sinh® (o-/ )

The attenvation coefficient for the fundamental im given by

2
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!'.i'hu 1t aﬁmﬂmta -expresoion agrees vith Rudnickg when Pl is
i'vm small or very large, but the transition between the two
extremes is slightly different.

The apace-averaged attenuation coefficlemt ap ., defined

by the relation

Py(x)=P ¢ “tuna *
o '
ie
. e azw
— i le=i- 1n [14- °5 > (l-e-m)]} (8
®tund 2ax 8 L4

Pifferntiating with respect to Po' and finding the maximum alope,

we obtaln
d o -20%
fund =x (l-e } 28 £ (9)
1 b 20x p ¢
-] max (=2 - )

where T = w/2n. I mention this giantity because it seems to have
been assumed in the].iteraturem that this quantity is given Dy the
term in square bracketm alone. It alsa occurs to me that

measurements of % pnd might well yield accurate values of the

paraseter B.

In closing, I would like to say that we may also use the
axpression for the second harmonic developed by Pamat6 and Safar ®
to obtain & simllar solution for spherical waves. But

wfortunsately wve must abandon our slide rule if = ie finite.




-PART 1II

The Efficiency of the Endfire Array

The generation of sum and difference frequencies by two
strong interfering sound waves has been a subject of discussion for

zome bupdreds of years. Helmh«\'.ﬂl.tﬁz:l'2

credite the original
obbervations to Sorge and Tartini in the period 1740-1750. Since
then the subject has recelved the stiention of several authors,
but vatil the last tem years or so, the effect seems to have been
regarded either as just a epurious, undesirsble aujsance, or aB

a rather academic esubjact. With thought zow directad towards
applications, it peems appropriate to queetion wvhether or not the
‘traditional' treatment of the interaction between two scund waves
leads to the most efficient scheme for generating am interaction
componest at a frequency below that of the transmitted wave or
waves. We shall adopt for our analysis the quasi-linear, source
function appreach due to Rayleigh13 N Lighthil]?. Hestervelta,

and Berktaslh. Berktay considers a primary wave of the form

plt}=E{(t) sin (wi+@) (10)

vhere E(t} representa the envelope of the pressure wave and w 1s
the primary carrier or center frequency. If E(t) bas no
components higher inm frequency than w3, then there will be Bo
overlap in the frequency spectrz of the scattered and primary waved.
Berktay shows that, taking frequencies up to ay/3, the farfield
pressure waveform will be of the form

py(tlaconst. 3% 1200,

3,°

where t' ie the retarded time t-&/co.




In this analysis wa will take E{t} to be a periodic function

having period T or repetition frequency (=2w/T, and will confine
our attention to the acattered componment at frequency (0. The
aagnitude of this frequency component will be proportional te the

quantity
T
of f 2(t) cos ft-r) dt
[-]

vhere r is adjusted to give a maximum. The factor ﬂz outside
the integral mccounts for the double differeatimtion with respect
to T.

We then define a figure of merit G:

T
B LB s at- ) at
T
[ B e av

a

G ie a zeasure of the efficiency of the nonlinear conversion process
in that G i3 proportional to ratioc of the amplitude of the scattered
signal at a frequency (), to the average power tranemitted at the
prisary frequency.

We would like to optimize G by shaping B2(t), vhile at the

T
same time holdingj E%(t)dt constant. Now the cosine term in
Q

equation (11) mcts ag a weighting function having extreme values
of + 1. We will maximize @, them, by concentrating Ez(t) as
much as possible at une of these extreme values, In other words,

we would like to reprement E-{t) by § (t- L). We then obtain

G tun (12)

Let us mow compare this optimum figure with that obtained for tte

‘eonventiona? two-frequency type transmission. If the two primary

fraquency components have equal magnitudes we may let E(t)=cos{at/2)
120




so that lz(t)aeosz(mlz)si(eos(m)ﬂ).

¥ obtain

8 gyt 3Pes?(r) ot + 0

Emztm/a) at

L. _ (19
F]

Equaticn (13) tells us that the tconventional' gyatem is
considersbly suboptigus. One could, im principle, obtain four tizmes
as guch power at the 'difference' freguency by tranemitting the
samo average primary power in a different manner.

0f course, the optisum systes- modulating the carrier by the
square root of a delts functien - cannot be realised.. And in any
case, our assumption that E(t) contains only frequency components
below w3 is violated. Let us therefore consider something a 1little
closer to reality. Comsider that we represent EZ(t) by a train of

rectangular pulges of width vT as shown in Figure 3. W¥e let

ES(t) = 4 WI/2 < t < VT2
7 Q<wuw<
s Q otherwise

Then
wT

2
o 33‘9:- I, oosnt at

o

= 02 gin (mw)
L) (1)

This result tells ua that we abould try to make w as small as
possible. However, at wa0,25 - quite a realistic sort of velue

~ 0=0.9 80 that we are still better off than the 'conventiopal’
system by 5.1 dB. The performance of the pulss sodulaticr system
is deseribed in Figure 4. Thia figure haa been porsalized so that

the perforsance of the two-frequency systes is described by the

borizontal line at O dB. .
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The case we} i of particular sigaificance. When wod, the
pask anvelope power {8 twice the average power just as in the
voonventional' cass. Yot the ncattered component at frequency 0}
46 2.1 dB greater for the pulsed tramsmission. If the constTalnt
imposed by the equipment ig in terms of pesk envelope power rather
than average power, it may be shown that w=} sigoifies the optimum
node of trensaisaion.

An experimental comparison has been oarried out in water,
operating am endfire array inm the 'conventional' mode and in the
we} pulsed mode. The carrier or cemter frequency used was 8.75MHz.
The difference or pulse repetition frequencies used were 100kHz ,
150kHs, and 300kHe. The same average and peak envelope powers
ware transaitted in each case. The pulsed pysten wag found to
yield a scattered compoment 2.140.4 dB greater than two frequency
syatel.

The pulesd tranemission will alao yield scattered frequency
eomponsnts which are harmonics of the repetition frequemcy. The
structure of the scattered wave frequency spectrum will, of course,
depepd upon w and upon the bandpass characteristics of the primary
trensmitter. OGemerally, the first one or two barmomics - perhaps
more - will be cosparable in magnitude to the fundamental compopent.
These signals are & "bonus” which may or may pot be useful.

The use of a rectengular envelope will slso allow eimplification
and higher efficiency on the electronie side of the tranamitter.
The pover amplifier, for example, may then be of the guitching mode
(clags D) variety. The sigmal gemerating circuite may also be of
the binary type.

The biggest limitation placed on the uss of pulses, is the
requirement for a greater primary-frequency bandwidth. The band-
width requiremsnt may be reduced by a factor of two if the carrier

{s modulated in both emplituds and phase'”, though the electronic
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complications are then considerable. The transducer bandwidth
requirement is, however, a techmological problem rather than a
fundsmental acoustic one.

A more fundamental consideration gust be the sort of thing
discussed in Part I - high intemsity attenuation of the primary
wave. Mellen, Koprad, and Bmwnins16 have shown that at very
high intensities the scatter signal becomes linear rather than

square law. Indeed it may be shown that under such conditions,

2
p lt) = const. 3~ ]E(t')| .
3,2 -

For this limiting case we might Gefine a new figure of werit G'.

T
21 f 2
QT ‘E(t)l cos O t dt
G'= Lﬁ—

%fnz (t) dt (15)
-]

This figure of merit is mow a ratio of avermge powers and hence

is a truer measure of convereion efficiency than was G.

For rectangular pulges we find

" 2
QT gin®  (mw} (16
n

where 'upt = 037,




For the two-frequemey cmse, G' = 8 nl'/hz. Thus vhen very high
transuitted intensities are employed, the we} pulse mystem will
yield a scattered component 3.5 dB greater than ths ‘conventional’
gystem, vhile the paxioum improvesent possible is now only 4.3 4B,

To answey our original questiop them, the imteraction
between two monochromatic mound weves does pot lead to the most
efticient gemeration of a scattered component lower in frequency
than the primary wave or waves, unless transducer bandwidth ie a
gerious Mmitation., If the necessary bandwidth is available, &
pulsed carrier type of trapsmission will give mn improvement in
efficiency of betwesn 2 and 6 dB depending upon the system
constraints.
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FHgure 1.

Figure 3.

PIGURE CAPTIONS |

Experiment and theory (egan.X)
compared at 8,75 Miz.

Comparicon of eqn.(4) with Blackstock's
solution to Burgera' eqn. mnd are
experimental data fitted to the two
respective theories.

Power envelope, Ez(t). for & train
of rectangular pulees.

Comparison of efficiency and peak power
in the pulse-mcde and two-frequency mode
endfire arrays. These quantities are
normalized so that the performsnce of the
two-frequency array is described by
unity (0 dB).
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